(本小題滿分14分)甲、乙兩間商店購進同一種商品的價格均為每件30元,銷售價均為每件50元.根據(jù)前5年的有關(guān)資料統(tǒng)計,甲商店這種商品的年需求量服從以下分布:

10

20

30

40

50

0.15

0.20

0.25

0.30

0.10

乙商店這種商品的年需求量服從二項分布

若這種商品在一年內(nèi)沒有售完,則甲商店在一年后以每件25元的價格處理;乙商店一年后剩下的這種商品第1件按25元的價格處理,第2件按24元的價格處理,第3件按23元的價格處理,依此類推.今年甲、乙兩間商店同時購進這種商品40件,根據(jù)前5年的銷售情況,請你預測哪間商店的期望利潤較大?

乙商店的期望利潤較大


解析:

:根據(jù)題意,甲商店這種商品的年需求量數(shù)學期望為:

10×0.15+20×0.20+30×0.25+40×0.30+50×0.10=30…………4分

∴甲商店的期望利潤為30×(50-30)-(40-30)×(30-25)=550(元) …… … …6分

乙商店這種商品的需求量的數(shù)學期望為:40×0.8=32……………………8分

依題意,一年后乙商店剩下的商品虧本金額是以30-25=5為首項,公差為1,項數(shù)為40-32=8的等差數(shù)列∴乙商店剩下的商品虧本金額為8×5+×1=68(元) ………………………12分

∴乙商店的期望利潤為32×(50-30)-68=572(元)>550(元)……………………13分

答:乙商店的期望利潤較大.………………14分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案