2009年山東卷考試說明數(shù)學(xué)(文史類)
Ⅰ.命題指導(dǎo)思想
Ⅱ.考試內(nèi)容及要求
Ⅲ.考試形式與試卷結(jié)構(gòu)
Ⅳ.題型示例
Ⅰ.命題指導(dǎo)思想
一、知識(shí)要求
1.了解:要求對所列知識(shí)的含義有初步的、感性的認(rèn)識(shí),知道其內(nèi)容是什么,并能在有關(guān)的問題中識(shí)別、模仿.
2.理解:要求對所列知識(shí)內(nèi)容有較為深刻的理性認(rèn)識(shí),清楚知識(shí)間的邏輯關(guān)系,能夠用數(shù)學(xué)語言對它們作正確的描述、說明,能夠利用所學(xué)的知識(shí)內(nèi)容對有關(guān)的問題進(jìn)行比較、判別、討論、推測,具備解決簡單問題的能力,并能初步應(yīng)用數(shù)學(xué)知識(shí)解決一些現(xiàn)實(shí)問題.
3.掌握:要求能夠?qū)λ兄R(shí)進(jìn)行準(zhǔn)確的刻畫或解釋、推導(dǎo)或證明、分類或歸納;系統(tǒng)地把握知識(shí)間的內(nèi)在聯(lián)系,能夠靈活運(yùn)用所學(xué)知識(shí),分析和解決較為復(fù)雜的數(shù)學(xué)問題以及一些現(xiàn)實(shí)問題.
二、能力要求
能力主要指運(yùn)算求解能力、數(shù)據(jù)處理能力、空間想象能力、抽象概括能力、推理論證能力,以及應(yīng)用意識(shí)和創(chuàng)新意識(shí).
1.運(yùn)算求解能力:能夠根據(jù)法則和公式進(jìn)行正確運(yùn)算、變形;能夠根據(jù)問題的條件,尋找并設(shè)計(jì)合理、簡捷的運(yùn)算方法;能夠根據(jù)要求對數(shù)據(jù)進(jìn)行估計(jì)和近似計(jì)算.
2.數(shù)據(jù)處理能力:能夠收集、整理、分析數(shù)據(jù),能抽取對研究問題有用的信息,并作出正確判斷;能夠根據(jù)所學(xué)知識(shí)對數(shù)據(jù)進(jìn)行進(jìn)一步的整理和分析,解決所給問題.
3.空間想象能力:能夠根據(jù)條件作出正確的圖形,根據(jù)圖形想象出直觀形象;能夠準(zhǔn)確地理解和解釋圖形中的基本元素及其相互關(guān)系;能夠?qū)D形進(jìn)行分解、組合;能夠運(yùn)用圖形與圖表等手段形象地揭示問題的本質(zhì)和規(guī)律.
4.抽象概括能力:能從具體、生動(dòng)的實(shí)例中,發(fā)現(xiàn)研究對象的本質(zhì);能從給定的大量信息材料中,概括出一些結(jié)論,并能將其應(yīng)用于解決問題或作出新的判斷.
5.推理論證能力:能夠根據(jù)已知的事實(shí)和已獲得的正確數(shù)學(xué)命題,論證某一數(shù)學(xué)命題的真實(shí)性.
6.應(yīng)用意識(shí):能夠綜合運(yùn)用所學(xué)知識(shí)對問題所提供的信息資料進(jìn)行歸納、整理和分類,將實(shí)際問題抽象為數(shù)學(xué)問題;能應(yīng)用相關(guān)的數(shù)學(xué)思想和方法解決問題,并能用數(shù)學(xué)語言正確地表述和解釋.
7.創(chuàng)新意識(shí):能夠獨(dú)立思考,靈活和綜合地運(yùn)用所學(xué)的數(shù)學(xué)知識(shí)、思想和方法,創(chuàng)造性地提出問題、分析問題和解決問題.
考試范圍是《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》中的必修課程內(nèi)容和選修系列1的內(nèi)容,即
數(shù)學(xué)1:集合、函數(shù)概念與基本初等函數(shù)I(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)).
數(shù)學(xué)2:立體幾何初步、平面解析幾何初步.
數(shù)學(xué)3:算法初步、統(tǒng)計(jì)、概率.
數(shù)學(xué)4:基本初等函數(shù)II(三角函數(shù))、平面上的向量、三角恒等變換.
數(shù)學(xué)5:解三角形、數(shù)列、不等式.
選修1-1:常用邏輯用語、圓錐曲線與方程、導(dǎo)數(shù)及其應(yīng)用.
選修1-2:統(tǒng)計(jì)案例、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入、框圖.
選修系列4的內(nèi)容,在2009年暫不被列入數(shù)學(xué)科目的命題范圍.
四、具體考試內(nèi)容及其要求
1. 集合
(1)集合的含義與表示
① 了解集合的含義、元素與集合的“屬于”關(guān)系.
② 能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題.
(2)集合間的基本關(guān)系
① 理解集合之間包含與相等的含義,能識(shí)別給定集合的子集.
② 在具體情境中,了解全集與空集的含義.
(3)集合的基本運(yùn)算
① 理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡單集合的并集與交集.
② 理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集.
③ 能使用韋恩(Venn)圖表達(dá)集合的關(guān)系及運(yùn)算.
2. 函數(shù)概念與基本初等函數(shù)I(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù))
(1)函數(shù)
① 了解構(gòu)成函數(shù)的要素,會(huì)求一些簡單函數(shù)的定義域和值域;了解映射的概念.
② 在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D象法、列表法、解析法)表示函數(shù).
③ 了解簡單的分段函數(shù),并能簡單應(yīng)用.
④ 理解函數(shù)的單調(diào)性、最大值、最小值及其幾何意義;結(jié)合具體函數(shù),了解函數(shù)奇偶性的含義.
⑤ 會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì).
(2)指數(shù)函數(shù)
① 了解指數(shù)函數(shù)模型的實(shí)際背景.
② 理解有理指數(shù)冪的含義,了解實(shí)數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算.
③ 理解指數(shù)函數(shù)的概念,理解指數(shù)函數(shù)的單調(diào)性,掌握指數(shù)函數(shù)圖象通過的特殊點(diǎn).
④ 知道指數(shù)函數(shù)是一類重要的函數(shù)模型.
(3)對數(shù)函數(shù)
① 理解對數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);了解對數(shù)在簡化運(yùn)算中的作用.
② 理解對數(shù)函數(shù)的概念,理解對數(shù)函數(shù)的單調(diào)性,掌握對數(shù)函數(shù)圖象通過的特殊點(diǎn).
③ 知道對數(shù)函數(shù)是一類重要的函數(shù)模型.
④ 了解指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù).
(4)冪函數(shù)
① 了解冪函數(shù)的概念.
② 結(jié)合函數(shù) 的圖象,了解它們的變化情況.
(5)函數(shù)與方程
① 結(jié)合二次函數(shù)的圖象,了解函數(shù)的零點(diǎn)與方程根的聯(lián)系,判斷一元二次方程根的存在性及根的個(gè)數(shù).
② 根據(jù)具體函數(shù)的圖象,能夠用二分法求相應(yīng)方程的近似解.
(6)函數(shù)模型及其應(yīng)用
① 了解指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)的增長特征;知道直線上升、指數(shù)增長、對數(shù)增長等不同函數(shù)類型增長的含義.
② 了解函數(shù)模型(如指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會(huì)生活中普遍使用的函數(shù)模型)的廣泛應(yīng)用.
3. 立體幾何初步
(1)空間幾何體
① 認(rèn)識(shí)柱、錐、臺(tái)、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu).
② 能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識(shí)別上述三視圖所表示的立體模型,會(huì)用斜二側(cè)法畫出它們的直觀圖.
③ 會(huì)用平行投影與中心投影兩種方法畫出簡單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式.
④ 會(huì)畫出某些建筑物的視圖與直觀圖(在不影響圖形特征的基礎(chǔ)上,尺寸、線條等不作嚴(yán)格要求).
⑤ 了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式).
(2)點(diǎn)、直線、平面之間的位置關(guān)系
① 理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理.
◆公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)都在此平面內(nèi).
◆公理2:過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.
◆公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線.
◆公理4:平行于同一條直線的兩條直線互相平行.
◆定理:空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ).
② 以立體幾何的上述定義、公理和定理為出發(fā)點(diǎn),認(rèn)識(shí)和理解空間中線面平行、垂直的有關(guān)性質(zhì)與判定定理.
理解以下判定定理:
◆如果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行.
◆如果一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面都平行,那么這兩個(gè)平面平行.
◆如果一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,那么該直線與此平面垂直.
◆如果一個(gè)平面經(jīng)過另一個(gè)平面的垂線,那么這兩個(gè)平面互相垂直.
理解以下性質(zhì)定理,并能夠證明:
◆如果一條直線與一個(gè)平面平行,經(jīng)過該直線的任一個(gè)平面與此平面相交,那么這條直線就和交線平行.
◆如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線相互平行.
◆垂直于同一個(gè)平面的兩條直線平行.
◆如果兩個(gè)平面垂直,那么一個(gè)平面內(nèi)垂直于它們交線的直線與另一個(gè)平面垂直.
③ 能運(yùn)用公理、定理和已獲得的結(jié)論證明一些空間圖形的位置關(guān)系的簡單命題.
4. 平面解析幾何初步
(1)直線與方程
① 在平面直角坐標(biāo)系中,結(jié)合具體圖形,掌握確定直線位置的幾何要素.
② 理解直線的傾斜角和斜率的概念,掌握過兩點(diǎn)的直線斜率的計(jì)算公式.
③ 能根據(jù)兩條直線的斜率判定這兩條直線平行或垂直.
④ 掌握確定直線位置的幾何要素,掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),了解斜截式與一次函數(shù)的關(guān)系.
⑤ 能用解方程組的方法求兩條相交直線的交點(diǎn)坐標(biāo).
⑥ 掌握兩點(diǎn)間的距離公式、點(diǎn)到直線的距離公式,會(huì)求兩條平行直線間的距離.
(2)圓與方程
① 掌握確定圓的幾何要素,掌握圓的標(biāo)準(zhǔn)方程與一般方程.
② 能根據(jù)給定直線、圓的方程,判斷直線與圓的位置關(guān)系;能根據(jù)給定兩個(gè)圓的方程,判斷兩圓的位置關(guān)系.
③ 能用直線和圓的方程解決一些簡單的問題.
④ 初步了解用代數(shù)方法處理幾何問題的思想.
(3)空間直角坐標(biāo)系
① 了解空間直角坐標(biāo)系,會(huì)用空間直角坐標(biāo)表示點(diǎn)的位置.
② 會(huì)推導(dǎo)空間兩點(diǎn)間的距離公式.
5. 算法初步
(1)算法的含義、程序框圖
① 了解算法的含義,了解算法的思想.
② 理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán).
(2)基本算法語句
理解幾種基本算法語句――輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句的含義.
6. 統(tǒng)計(jì)
(1)隨機(jī)抽樣
① 理解隨機(jī)抽樣的必要性和重要性.
② 會(huì)用簡單隨機(jī)抽樣方法從總體中抽取樣本;了解分層抽樣和系統(tǒng)抽樣方法.
(2)用樣本估計(jì)總體
① 了解分布的意義和作用,會(huì)列頻率分布表、會(huì)畫頻率分布直方圖、頻率折線圖、莖葉圖,理解它們各自的特點(diǎn).
② 理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,會(huì)計(jì)算數(shù)據(jù)標(biāo)準(zhǔn)差.
③ 能從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并給出合理的解釋.
④ 會(huì)用樣本的頻率分布估計(jì)總體分布,會(huì)用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征,理解用樣本估計(jì)總體的思想.
⑤ 會(huì)用隨機(jī)抽樣的基本方法和樣本估計(jì)總體的思想解決一些簡單的實(shí)際問題.
(3)變量的相關(guān)性
① 會(huì)作兩個(gè)有關(guān)聯(lián)變量的數(shù)據(jù)的散點(diǎn)圖,會(huì)利用散點(diǎn)圖認(rèn)識(shí)變量間的相關(guān)關(guān)系.
② 了解最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程.
7. 概率
(1)事件與概率
① 了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義,了解頻率與概率的區(qū)別.
② 了解兩個(gè)互斥事件的概率加法公式.
(2)古典概型
① 理解古典概型及其概率計(jì)算公式.
② 會(huì)用列舉法計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率.
(3)隨機(jī)數(shù)與幾何概型
① 了解隨機(jī)數(shù)的意義,能運(yùn)用模擬方法估計(jì)概率.
② 了解幾何概型的意義.
8. 基本初等函數(shù)II(三角函數(shù))
(1)任意角的概念、弧度制
① 了解任意角的概念.
② 了解弧度制概念,能進(jìn)行弧度與角度的互化.
(2)三角函數(shù)
① 理解任意角三角函數(shù)(正弦、余弦、正切)的定義.
② 能利用單位圓中的三角函數(shù)線推導(dǎo)出的正弦、余弦、正切的誘導(dǎo)公式,能畫出的圖象,了解三角函數(shù)的周期性.
③ 理解正弦函數(shù)、余弦函數(shù)在區(qū)間 上的性質(zhì)(如單調(diào)性、最大值和最小值以及與軸的交點(diǎn)等),理解正切函數(shù)在區(qū)間 內(nèi)的單調(diào)性.
④ 理解同角三角函數(shù)的基本關(guān)系式:
.
⑤ 了解函數(shù)的物理意義;能畫出的圖象,了解參數(shù)對函數(shù)圖象變化的影響.
⑥ 了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,會(huì)用三角函數(shù)解決一些簡單實(shí)際問題.
9. 平面向量
(1)平面向量的實(shí)際背景及基本概念
① 了解向量的實(shí)際背景.
② 理解平面向量的概念,理解兩個(gè)向量相等的含義.
③ 理解向量的幾何表示.
(2)向量的線性運(yùn)算
① 掌握向量加法、減法的運(yùn)算,并理解其幾何意義.
② 掌握向量數(shù)乘的運(yùn)算及其意義,理解兩個(gè)向量共線的含義.
③ 了解向量線性運(yùn)算的性質(zhì)及其幾何意義.
(3)平面向量的基本定理及坐標(biāo)表示
① 了解平面向量的基本定理及其意義.
② 掌握平面向量的正交分解及其坐標(biāo)表示.
③ 會(huì)用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn)算.
④ 理解用坐標(biāo)表示的平面向量共線的條件.
(4)平面向量的數(shù)量積
① 理解平面向量數(shù)量積的含義及其物理意義.
② 了解平面向量的數(shù)量積與向量投影的關(guān)系.
③ 掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算.
④ 能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系.
(5)向量的應(yīng)用
① 會(huì)用向量方法解決某些簡單的平面幾何問題.
② 會(huì)用向量方法解決某些簡單的力學(xué)問題及其他一些實(shí)際問題.
10. 三角恒等變換
(1)和與差的三角函數(shù)公式
① 會(huì)用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式.
② 能利用兩角差的余弦公式推導(dǎo)出兩角差的正弦、正切公式.
③ 能利用兩角差的余弦公式推導(dǎo)出兩角和的正弦、余弦、正切公式,推導(dǎo)出二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系.
(2)簡單的三角恒等變換
能運(yùn)用上述公式進(jìn)行簡單的恒等變換(包括導(dǎo)出積化和差、和差化積、半角公式,但對這三組公式不要求記憶).
11. 解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.
(2)應(yīng)用
能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題.
12. 數(shù)列
(1)數(shù)列的概念和簡單表示法
① 了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項(xiàng)公式).
② 了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
(2)等差數(shù)列、等比數(shù)列
① 理解等差數(shù)列、等比數(shù)列的概念.
② 掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.
③ 能在具體的問題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題.
④ 了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
13. 不等式
(1)不等關(guān)系
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式
① 會(huì)從實(shí)際情境中抽象出一元二次不等式模型.
② 通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
③ 會(huì)解一元二次不等式,對給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題
① 會(huì)從實(shí)際情境中抽象出二元一次不等式組.
② 了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
③ 會(huì)從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
(4)基本不等式:
① 了解基本不等式的證明過程.
② 會(huì)用基本不等式解決簡單的最大(。┲祮栴}.
14. 常用邏輯用語
(1)命題及其關(guān)系
① 理解命題的概念.
② 了解“若,則”形式的命題及其逆命題、否命題與逆否命題,會(huì)分析四種命題的相互關(guān)系.
③ 理解必要條件、充分條件與充要條件的意義.
(2)簡單的邏輯聯(lián)結(jié)詞
了解邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義.
(3)全稱量詞與存在量詞
① 理解全稱量詞與存在量詞的意義.
② 能正確地對含有一個(gè)量詞的命題進(jìn)行否定.
15. 圓錐曲線與方程
圓錐曲線與方程
① 了解圓錐曲線的實(shí)際背景,了解圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用.
② 掌握橢圓的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡單幾何性質(zhì).
③ 了解雙曲線、拋物線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它們的簡單幾何性質(zhì).
④ 理解數(shù)形結(jié)合的思想.
⑤ 了解圓錐曲線的簡單應(yīng)用.
16. 導(dǎo)數(shù)及其應(yīng)用
(1)導(dǎo)數(shù)概念及其幾何意義
① 了解導(dǎo)數(shù)概念的實(shí)際背景.
② 理解導(dǎo)數(shù)的幾何意義.
(2)導(dǎo)數(shù)的運(yùn)算
① 能根據(jù)導(dǎo)數(shù)定義,求函數(shù)的導(dǎo)數(shù).其中C為常數(shù)
② 能利用下面給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡單函數(shù)的導(dǎo)數(shù).
?常見基本初等函數(shù)的導(dǎo)數(shù)公式和常用的導(dǎo)數(shù)運(yùn)算公式:
(為常數(shù));
?法則1:
?法則2:
?法則3:
(3)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用
① 了解函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間(其中多項(xiàng)式函數(shù)一般不超過三次).
② 了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值(其中多項(xiàng)式函數(shù)一般不超過三次);會(huì)求閉區(qū)間上函數(shù)的最大值、最小值(其中多項(xiàng)式函數(shù)一般不超過三次).
(4)生活中的優(yōu)化問題
會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問題.
17. 統(tǒng)計(jì)案例
了解下列一些常見的統(tǒng)計(jì)方法,并能應(yīng)用這些方法解決一些實(shí)際問題.
(1)獨(dú)立性檢驗(yàn)
了解獨(dú)立性檢驗(yàn)(只要求2×2列聯(lián)表)的基本思想、方法及其簡單應(yīng)用.
(2)回歸分析
了解回歸的基本思想、方法及其簡單應(yīng)用.
18. 推理與證明
(1)合情推理與演繹推理
① 了解合情推理的含義,能利用歸納和類比等進(jìn)行簡單的推理;了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.
② 了解演繹推理的重要性,掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡單推理.
③ 了解合情推理和演繹推理之間的聯(lián)系和差異.
(2)直接證明與間接證明
① 了解直接證明的兩種基本方法――分析法和綜合法;了解分析法和綜合法的思考過程、特點(diǎn).
② 了解間接證明的一種基本方法――反證法;了解反證法的思考過程、特點(diǎn).
19. 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入
(1)復(fù)數(shù)的概念
① 理解復(fù)數(shù)的基本概念.
② 理解復(fù)數(shù)相等的充要條件.
③ 了解復(fù)數(shù)的代數(shù)表示法及其幾何意義.
(2)復(fù)數(shù)的四則運(yùn)算
① 會(huì)進(jìn)行復(fù)數(shù)代數(shù)形式的四則運(yùn)算.
② 了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.
20.框圖
(1)流程圖
① 了解程序框圖.
② 了解工序流程圖(即統(tǒng)籌圖).
③ 能繪制簡單實(shí)際問題的流程圖,了解流程圖在解決實(shí)際問題中的作用.
(2)結(jié)構(gòu)圖
① 了解結(jié)構(gòu)圖.
② 會(huì)運(yùn)用結(jié)構(gòu)圖梳理已學(xué)過的知識(shí)、整理收集到的資料信息.
Ⅲ.考試形式與試卷結(jié)構(gòu)
考試形式:采用閉卷、筆試形式.考試限定用時(shí)為120分鐘.考試不允許使用計(jì)算器.
試卷結(jié)構(gòu):試卷包括第Ⅰ卷和第Ⅱ卷.滿分為150分.第Ⅰ卷為單項(xiàng)選擇題,主要考查數(shù)學(xué)的基本知識(shí)和基本技能.共12題,60分.第Ⅱ卷為填空題和解答題,主要考查數(shù)學(xué)的思想、方法和能力.填空題共4題,16分.填空題只要求直接填寫結(jié)果,不必寫出計(jì)算過程或推證過程.解答題包括計(jì)算題、證明題和應(yīng)用題等, 共6題, 74分.解答應(yīng)寫出文字說明、演算步驟或推證過程.
試卷包括容易題、中等難度題和難題,以中等難度題為主.
Ⅳ.題型示例
一.選擇題
1. 復(fù)數(shù)的實(shí)部是
(A) (B) (C) (D)
2. 已知集合,則
(A) (B) (C) (D)
3. 定義集合運(yùn)算:.設(shè)集合,則集合的所有元素之和為
(A)0 (B)6 (C)12 (D)18
4. 下列幾何體各自的三視圖中,有且僅有兩個(gè)視圖相同的是
(A) ① ② (B) ① ③ (C) ① ④ (D) ② ④
5. 要得到函數(shù)的圖象,只需將函數(shù)的圖象
(A) 向右平移個(gè)單位 (B)向右平移個(gè)單位
(C) 向左平移個(gè)單位 (D)向左平移個(gè)單位
6. 下列函數(shù)中既是奇函數(shù),又在區(qū)間上單調(diào)遞減的是
(A) (B)
(C) 。―)
7. 已知向量,,若2與垂直,則
(A)1 (B) (C)2 (D) 4
8.給出下列三個(gè)等式:,,.下列函數(shù)中不滿足其中任何一個(gè)等式的是
(A) (B) (C) (D)
9. 命題“對任意的,” 的否定是
(A) 不存在, (B) 存在,
(C) 存在, (D) 對任意的,
10. 某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與19秒之間,將測試結(jié)果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒; …… 第六組,成績大于等于18秒且小于等于19秒. 右圖是按上述分組方法得到的頻率分布直方圖. 設(shè)成績小于17秒的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比為, 成績大于等于15秒且小于17秒的學(xué)生人數(shù)為,則從頻率分布直方圖中可分析出和分別為
(A)0.9,35 (B) 0.9,45
(C)0.1,35 (D) 0.1,45
11. 設(shè)是坐標(biāo)原點(diǎn),是拋物線的焦點(diǎn),是拋物線上的一點(diǎn),與軸正向的夾角為,則為
(A) (B) (C) (D)
13. 設(shè)函數(shù)與的圖象的交點(diǎn)為,則所在的區(qū)間是
(A) (B) (C) (D)
14. 設(shè)集合, 分別從集合和中隨機(jī)取一個(gè)數(shù)和,確定平面上的一個(gè)點(diǎn), 記“點(diǎn)落在直線上”為事件(,), 若事件的概率最大,則的所有可能值為
(A) 3 (B) 4 (C) 2和5 (D) 3和4
二.填空題
1. 設(shè)函數(shù),,,則____________.
2. 某學(xué)校共有教師490人,其中不到40歲的有350人,40歲及以上的有140人.為了解普通話在該校教師中的推廣普及情況,用分層抽樣方法,從全體教師中抽取一個(gè)容量為70人的樣本進(jìn)行普通話水平測試,其中在不到40歲的教師中應(yīng)抽取的人數(shù)是.
3. 函數(shù)()的圖象恒過定點(diǎn),若在直線上,則的最小值為_____________.
4. 當(dāng)時(shí),不等式恒成立,則的取值范圍是_______________.
5. 已知是不同的直線,是不重合的平面,給出下列命題:
①若∥,則平行于平面內(nèi)的任意一條直線
②若∥則∥
③若∥則∥
④若∥,則∥
上面命題中,真命題的序號(hào)是(寫出所有真命題的序號(hào)).
6. 與直線和曲線都相切的半徑最小的圓的標(biāo)準(zhǔn)方程是 ____________________________.
三.解答題
1. 在中,角的對邊分別為,.
(Ⅰ) 求;
(Ⅱ) 若,且 求.
2. 設(shè)是公比大于1的等比數(shù)列,為數(shù)列的前項(xiàng)和. 已知, 且構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng);
(Ⅱ)令,求數(shù)列的前項(xiàng)和.
3. 已知是函數(shù)的一個(gè)極值點(diǎn),其中
(I)求與的關(guān)系表達(dá)式;
(II)求的單調(diào)區(qū)間.
4. 某公司計(jì)劃2008年在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過300分鐘的廣告,廣告總費(fèi)用不超過9萬元.甲、乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘. 假定甲、乙兩個(gè)電視臺(tái)為該公司所做的每分鐘廣告,能給公司帶來的收益分別為0.3萬元和0.2萬元. 問該公司如何分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司的收益最大, 最大收益是多少萬元?
5. 如圖,在直四棱柱中,已知,,.
(Ⅰ)求證:;
(Ⅱ)設(shè)是上一點(diǎn),試確定點(diǎn)的位置,使平面,并說明理由.
6.如圖,甲船以每小時(shí)30海里的速度向正北方向航行,乙船按固定方向勻速直線航行. 當(dāng)甲船位于處時(shí),乙船位于甲船的北偏西方向的處,此時(shí)兩船相距20海里. 當(dāng)甲船航行20分鐘到達(dá)處時(shí),乙船航行到甲船的北偏西方向的處,此時(shí)兩船相距10海里. 問乙船每小時(shí)航行多少海里?
7. 設(shè)函數(shù),其中.
證明:當(dāng)時(shí), 函數(shù)沒有極值點(diǎn);當(dāng)時(shí),函數(shù)有且只有一個(gè)極值點(diǎn),并求出極值.
8. 已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn). 求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).esoon.com) 版權(quán)所有
|