山東省蒼山縣08-09學年高三上學期期末考試

                  數(shù)學(文科)         2009.1

 

第Ⅰ卷(選擇題  共60分)

一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

1.已知集合,,則集合與集合的關系是(   ).

試題詳情

A.M=N               B.MN              C.MN              D.MN=

試題詳情

2.設(   ).

       A.0                    B.1                     C.2                     D.3

試題詳情

3.已知命題給出下列結論:

試題詳情

       ①命題“”是真命題               ②命題“”是假命題

試題詳情

       ③命題“”是真命題;         ④命題“”是假命題

其中正確的是(   ).

       A.②④               B.②③               C.③④               D.①②③

試題詳情

4.已知∈(,),sin=,則tan()等于(   ).

試題詳情

A.     B.7      C.-         D.-7

試題詳情

5.下面是一個算法的程序框圖,當輸入的值為3時,輸出的結果恰好是,則?處的關系式是(   ).

試題詳情

A.                    B.

試題詳情

C.                    D.

試題詳情

6.“a =1”是“直線和直線互相垂直”的(   ).

    A.充分而不必要條件                  B.必要而不充分條件

    C.充要條件                             D.既不充分也不必要條件

試題詳情

7.在中,AB=3,AC=2,BC=,則(   ).

試題詳情

    A.               B.            C.                  D.

試題詳情

8.為得到函數(shù)的圖象,只需將函數(shù)的圖像(   ).

試題詳情

       A.向左平移個長度單位               B.向右平移個長度單位

試題詳情

C.向左平移個長度單位             D.向右平移個長度單位

試題詳情

 9.函數(shù)在定義域上零點個數(shù)為(   ).

試題詳情

       A.1          B.2                       C.3           D.4

20080522

  側視圖、俯視圖,如果直角三角形的直角邊

  長均為1,那么這個幾何體的體積為(   ).                             

試題詳情

       A.1                   B.

試題詳情

       C.               D.

 

試題詳情

11.若曲線的一條切線與直線垂直,則的方程為(   ).

試題詳情

   A.                       B.

試題詳情

C.                      D.

試題詳情

12.已知拋物線有相同的焦點F,點A是兩曲線的交點,且AF⊥x軸,則雙曲線的離心率為 (   ).

 

試題詳情

       A.          B.           C.           D.

 

 

 

高三年級模塊學業(yè)水平測試

試題詳情

              數(shù)學(文科)         2009.1

 

第Ⅱ卷(非選擇題,共90分)

題  號

17

18

19

20

21

22

合 計

得  分

 

 

 

 

 

 

 

 

 

試題詳情

二、填空題:本大題共4小題.每小題4分.共16分.把答案填在答題卡的相應位置.

13.已知向量的夾角為120°,且||=2,||=5,則(2)?=_____

試題詳情

14.經(jīng)過圓的圓心C,且與直線垂直的直線方程是          .

試題詳情

15.在等比數(shù)列中,,前項和為,若數(shù)列)也是等比數(shù)列,則 等于            

試題詳情

16.關于直線與平面,有以下四個命題:

試題詳情

①若,則;②若,則

試題詳情

③若,則;④若,則

其中正確命題的序號是             。(把你認為正確命題的序號都填上)

試題詳情

三、解答題:本大題共6小題。共74分.解答應寫出文字說明。證明過程或演算步驟.

17.(本小題滿分12分)已知函數(shù)f(x)=sin(2-)+2sin2(-) (R)

(1)求函數(shù)f(x)的最小正周期    ;

試題詳情

(2)求使函數(shù)f(x)取得最大值的的集合.

    

 

 

 

 

 

 

 

試題詳情

18.(本小題滿分12分)已知等差數(shù)列的前項和為

(1)求q的值;

試題詳情

(2)若的等差中項為18,滿足,求數(shù)列的{}前項和.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

19.(本小題滿分12分)已知關于x的一元二次函數(shù)

試題詳情

   (1)設集合P={1,2, 3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為,求函數(shù)在區(qū)間[上是增函數(shù)的概率;

試題詳情

(2)設點(,)是區(qū)域內的隨機點,求函數(shù)上是增函數(shù)的概率。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

 

 

試題詳情

20.(本小題滿分12分)如圖,在三棱錐A-BCD中,側面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=,BD=CD=1,另一個側面是正三角形

(1)求證:AD^BC

試題詳情

(2)在直線AC上是否存在一點E,使ED與面BCD成30°角?若存在確定E的位置;若不存在,說明理由。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

21.(本小題滿分12分)設

試題詳情

   (1)若,求過點(2,)的直線方程;

試題詳情

   (2)若在其定義域內為單調增函數(shù),求的取值范圍。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

22.(本小題滿分12分)設橢圓過點分別為橢圓C的左、右兩個焦點,且離心率

   (1)求橢圓C的方程;

試題詳情

   (2)已知A為橢圓C的左頂點,直線過右焦點F2與橢圓C交于M、N兩點。若AM、AN 的斜率滿足求直線的方程;

 

 

 

 

 

試題詳情

一、選擇題:

1C2C   3B   4A   5 C  6C.  7D   8C   9.

20080522

 

二、填空題:

13.13   14.   15.       16.②③

三、解答題:

 17.解:(1) f()=sin(2-)+1-cos2(-)

          = 2[sin2(-)- cos2(-)]+1

         =2sin[2(-)-]+1

         = 2sin(2x-) +1  …………………………………………5分

∴ T==π…………………………………………7分

  (2)當f(x)取最大值時, sin(2x-)=1,有  2x- =2kπ+ ……………10分

=kπ+    (kZ) …………………………………………11分

∴所求的集合為{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

 

18.解:(1) :當時,,…………………………………………1分

時,.

……………………………………………………………………………………3分

是等差數(shù)列,

??????????…………………………………………5?分

 (2)解:, .…………………………………………7分

,, ……………………………………8分

??????????…………………………………………??9分

.

,,即是等比數(shù)列. ………………………11分

所以數(shù)列的前項和.………………………12分

19.解(1)∵函數(shù)的圖象的對稱軸為

要使在區(qū)間上為增函數(shù),

當且僅當>0且……………………2分

=1則=-1,

=2則=-1,1

=3則=-1,1,;………………4分

∴事件包含基本事件的個數(shù)是1+2+2=5

∴所求事件的概率為………………6分

(2)由(1)知當且僅當>0時,

函數(shù)上為增函數(shù),

依條件可知試驗的全部結果所構成的區(qū)域為

構成所求事件的區(qū)域為三角形部分!8分

………………10分

∴所求事件的概率為………………12分

20解:(1):作,連

的中點,連、,

則有……………………………4分

…………………………6分

(2)設為所求的點,作,連.則………7分

就是與面所成的角,則.……8分

,易得

……………………………………10分

解得………11分

故線段上存在點,且時,與面角. …………12分

 

21.解(1)由

    

過點(2,)的直線方程為,即

   (2)由

在其定義域(0,+)上單調遞增。

只需恒成立

①由上恒成立

,∴,∴,∴…………………………10分

綜上k的取值范圍為………………12分

22.解:(1)由題意橢圓的離心率

∴橢圓方程為………………3分

又點(1,)在橢圓上,∴=1

∴橢圓的方程為………………6分

   (2)若直線斜率不存在,顯然不合題意;

則直線l的斜率存在!7分

設直線,直線l和橢交于,。

依題意:………………………………9分

由韋達定理可知:………………10分

從而………………13分

求得符合

故所求直線MN的方程為:………………14分

 

 

 

 


同步練習冊答案