6.“a =1 是“直線和直線互相垂直 的. A.充分而不必要條件 B.必要而不充分條件 C.充要條件 D.既不充分也不必要條件 查看更多

 

題目列表(包括答案和解析)

“a=1”是“直線x+y=0和直線x-ay=0互相垂直”的( 。
A、充分而不必要條件B、必要而不充分條件C、充要條件D、既不充分也不必要條件

查看答案和解析>>

4、“a=1”是“直線x+y=0和直線x+ay=0互相垂直”的(  )

查看答案和解析>>

“a=1”是“直線ax+(2-a)y=0和x-ay=1互相垂直”的(  )

查看答案和解析>>

“a=1”是“直線ax-y=0和直線x+(1-a)y+3=0互相垂直”的( 。

查看答案和解析>>

a=1是直線(3a+2)x+(1-4a)y+8=0和(5a-2)x+(a+4)y-7=0互相垂直的( 。
A、充分不必要條件B、必要不充分條件C、充要條件D、既不充分也非必要條件

查看答案和解析>>

一、選擇題:

1C2C   3B   4A   5 C  6C.  7D   8C   9.

  • <nobr id="j7bco"><var id="j7bco"></var></nobr>

        1. 20080522

           

          二、填空題:

          13.13   14.   15.       16.②③

          三、解答題:

           17.解:(1) f()=sin(2-)+1-cos2(-)

                    = 2[sin2(-)- cos2(-)]+1

                   =2sin[2(-)-]+1

                   = 2sin(2x-) +1  …………………………………………5分

          ∴ T==π…………………………………………7分

            (2)當(dāng)f(x)取最大值時(shí), sin(2x-)=1,有  2x- =2kπ+ ……………10分

          =kπ+    (kZ) …………………………………………11分

          ∴所求的集合為{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

           

          18.解:(1) :當(dāng)時(shí),,…………………………………………1分

          當(dāng)時(shí),.

          ……………………………………………………………………………………3分

          是等差數(shù)列,

          ??????????…………………………………………5?分

           (2)解:, .…………………………………………7分

          ,, ……………………………………8分

          ??????????…………………………………………??9分

          .

          ,,即是等比數(shù)列. ………………………11分

          所以數(shù)列的前項(xiàng)和.………………………12分

          19.解(1)∵函數(shù)的圖象的對(duì)稱軸為

          要使在區(qū)間上為增函數(shù),

          當(dāng)且僅當(dāng)>0且……………………2分

          =1則=-1,

          =2則=-1,1

          =3則=-1,1,;………………4分

          ∴事件包含基本事件的個(gè)數(shù)是1+2+2=5

          ∴所求事件的概率為………………6分

          (2)由(1)知當(dāng)且僅當(dāng)>0時(shí),

          函數(shù)上為增函數(shù),

          依條件可知試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?sub>

          構(gòu)成所求事件的區(qū)域?yàn)槿切尾糠。……………?分

          ………………10分

          ∴所求事件的概率為………………12分

          20解:(1):作,連

          的中點(diǎn),連、,

          則有……………………………4分

          …………………………6分

          (2)設(shè)為所求的點(diǎn),作,連.則………7分

          就是與面所成的角,則.……8分

          設(shè),易得

          ……………………………………10分

          解得………11分

          故線段上存在點(diǎn),且時(shí),與面角. …………12分

           

          21.解(1)由

              

          過點(diǎn)(2,)的直線方程為,即

             (2)由

          在其定義域(0,+)上單調(diào)遞增。

          只需恒成立

          ①由上恒成立

          ,∴,∴,∴…………………………10分

          綜上k的取值范圍為………………12分

          22.解:(1)由題意橢圓的離心率

          ∴橢圓方程為………………3分

          又點(diǎn)(1,)在橢圓上,∴=1

          ∴橢圓的方程為………………6分

             (2)若直線斜率不存在,顯然不合題意;

          則直線l的斜率存在!7分

          設(shè)直線,直線l和橢交于,

          依題意:………………………………9分

          由韋達(dá)定理可知:………………10分

          從而………………13分

          求得符合

          故所求直線MN的方程為:………………14分

           

           

           

           


          同步練習(xí)冊(cè)答案