22.設(shè)橢圓過點(diǎn)分別為橢圓C的左.右兩個(gè)焦點(diǎn).且離心率 (1)求橢圓C的方程, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

設(shè)橢圓的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),已知橢圓中心關(guān)于直線對(duì)稱點(diǎn)恰好落在橢圓的左準(zhǔn)線上。

   (1)求過O、F并且與橢圓右準(zhǔn)線l相切的圓的方程;

 
   (2)設(shè)過點(diǎn)F且不與坐標(biāo)軸垂直的直線交橢圓于M、N兩點(diǎn),線段MN的中垂線與y軸交于點(diǎn)A,求點(diǎn)A縱坐標(biāo)的取值范圍。

查看答案和解析>>

(本小題滿分12分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率,過分別作直線,且分別交直線兩點(diǎn)。

(Ⅰ)若,求 橢圓的方程;

(Ⅱ)當(dāng)取最小值時(shí),試探究

的關(guān)系,并證明之.

查看答案和解析>>

(本小題滿分12分)

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且

(1)求橢圓的離心率;

(2)若過、三點(diǎn)的圓恰好與直線相切,求橢圓

方程;

(3)在(2)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓交于、

點(diǎn),在軸上是否存在點(diǎn)使得以為鄰邊的平行四邊形是菱形,

如果存在,求出的取值范圍,如果不存在,說明理由.

 

查看答案和解析>>

(本小題滿分12分)

設(shè)橢圓的離心率,右焦點(diǎn)到直線的距離為坐標(biāo)原點(diǎn)。

(I)求橢圓的方程;

(II)過點(diǎn)作兩條互相垂直的射線,與橢圓分別交于兩點(diǎn),證明點(diǎn)到直線的距離為定值,并求弦長(zhǎng)度的最小值.

 

查看答案和解析>>

(本小題滿分12分)設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且.

(1)求橢圓的離心率;

(2)若過三點(diǎn)的圓恰好與直線相切,求橢圓的方程;

(3)在(2)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由。

 

 

 

查看答案和解析>>

一、選擇題:

1C2C   3B   4A   5 C  6C.  7D   8C   9.

      20080522

       

      二、填空題:

      13.13   14.   15.       16.②③

      三、解答題:

       17.解:(1) f()=sin(2-)+1-cos2(-)

                = 2[sin2(-)- cos2(-)]+1

               =2sin[2(-)-]+1

               = 2sin(2x-) +1  …………………………………………5分

      ∴ T==π…………………………………………7分

        (2)當(dāng)f(x)取最大值時(shí), sin(2x-)=1,有  2x- =2kπ+ ……………10分

      =kπ+    (kZ) …………………………………………11分

      ∴所求的集合為{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

       

      18.解:(1) :當(dāng)時(shí),,…………………………………………1分

      當(dāng)時(shí),.

      ……………………………………………………………………………………3分

      是等差數(shù)列,

      ??????????…………………………………………5?分

       (2)解:, .…………………………………………7分

      ,, ……………………………………8分

      ??????????…………………………………………??9分

      .

      ,,即是等比數(shù)列. ………………………11分

      所以數(shù)列的前項(xiàng)和.………………………12分

      19.解(1)∵函數(shù)的圖象的對(duì)稱軸為

      要使在區(qū)間上為增函數(shù),

      當(dāng)且僅當(dāng)>0且……………………2分

      =1則=-1,

      =2則=-1,1

      =3則=-1,1,;………………4分

      ∴事件包含基本事件的個(gè)數(shù)是1+2+2=5

      ∴所求事件的概率為………………6分

      (2)由(1)知當(dāng)且僅當(dāng)>0時(shí),

      函數(shù)上為增函數(shù),

      依條件可知試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?sub>

      構(gòu)成所求事件的區(qū)域?yàn)槿切尾糠。……………?分

      ………………10分

      ∴所求事件的概率為………………12分

      20解:(1):作,連

      的中點(diǎn),連、,

      則有……………………………4分

      …………………………6分

      (2)設(shè)為所求的點(diǎn),作,連.則………7分

      就是與面所成的角,則.……8分

      設(shè),易得

      ……………………………………10分

      解得………11分

      故線段上存在點(diǎn),且時(shí),與面角. …………12分

       

      21.解(1)由

          

      過點(diǎn)(2,)的直線方程為,即

         (2)由

      在其定義域(0,+)上單調(diào)遞增。

      只需恒成立

      ①由上恒成立

      ,∴,∴,∴…………………………10分

      綜上k的取值范圍為………………12分

      22.解:(1)由題意橢圓的離心率

      ∴橢圓方程為………………3分

      又點(diǎn)(1,)在橢圓上,∴=1

      ∴橢圓的方程為………………6分

         (2)若直線斜率不存在,顯然不合題意;

      則直線l的斜率存在!7分

      設(shè)直線,直線l和橢交于,。

      依題意:………………………………9分

      由韋達(dá)定理可知:………………10分

      從而………………13分

      求得符合

      故所求直線MN的方程為:………………14分

       

       

       

       


      同步練習(xí)冊(cè)答案