科目: 來(lái)源: 題型:
【題目】如圖,正三棱柱中,各棱長(zhǎng)均為4, 、分別是,的中點(diǎn).
(1)求證:平面;
(2)求直線(xiàn)與平面所成角的余弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某學(xué)校隨機(jī)抽取部分學(xué)生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)制成頻率分布直方圖(如圖),若上學(xué)路上所需時(shí)間的范圍為,樣本數(shù)據(jù)分組為,,,,.
(1)求直方圖中a的值;
(2)如果上學(xué)路上所需時(shí)間不少于40分鐘的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,若招收學(xué)生1200人,請(qǐng)估計(jì)所招學(xué)生中有多少人可以申請(qǐng)住宿;
(3)求該校學(xué)生上學(xué)路上所需的平均時(shí)間.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是菱形,,是棱的中點(diǎn),,在線(xiàn)段上,且.
(1)證明:面;
(2)若,面面,求二面角的余弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=81,a3+a5=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,若{bn}的前n項(xiàng)和為Tn,證明:Tn<.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別是線(xiàn)段AB、AD、AA1的中點(diǎn),又P、Q分別在線(xiàn)段A1B1、A1D1上,且A1P=A1Q=x(0<x<1).設(shè)平面MEF∩平面MPQ
=l,現(xiàn)有下列結(jié)論:
①l∥平面ABCD;
②l⊥AC;
③直線(xiàn)l與平面BCC1B1不垂直;
④當(dāng)x變化時(shí),l不是定直線(xiàn).
其中不成立的結(jié)論是________.(寫(xiě)出所有不成立結(jié)論的序號(hào))
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知拋物線(xiàn):的焦點(diǎn)為,直線(xiàn)與拋物線(xiàn)交于,兩點(diǎn),是坐標(biāo)原點(diǎn).
(1)若直線(xiàn)過(guò)點(diǎn)且,求直線(xiàn)的方程;
(2)已知點(diǎn),若直線(xiàn)不與坐標(biāo)軸垂直,且,證明:直線(xiàn)過(guò)定點(diǎn).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知拋物線(xiàn)()經(jīng)過(guò)點(diǎn),直線(xiàn)與拋物線(xiàn)有兩個(gè)不同的交點(diǎn)、,直線(xiàn)交軸于,直線(xiàn)交軸于.
(1)若直線(xiàn)過(guò)點(diǎn),求直線(xiàn)的斜率的取值范圍;
(2)若直線(xiàn)過(guò)點(diǎn),設(shè),,,求的值;
(3)若直線(xiàn)過(guò)拋物線(xiàn)的焦點(diǎn),交軸于點(diǎn),,,求的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分13分)
為回饋顧客,某商場(chǎng)擬通過(guò)摸球兌獎(jiǎng)的方式對(duì)1000位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有4個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個(gè)球,球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額.
(1)若袋中所裝的4個(gè)球中有1個(gè)所標(biāo)的面值為50元,其余3個(gè)均為10元,求
①顧客所獲的獎(jiǎng)勵(lì)額為60元的概率
②顧客所獲的獎(jiǎng)勵(lì)額的分布列及數(shù)學(xué)期望;
(2)商場(chǎng)對(duì)獎(jiǎng)勵(lì)總額的預(yù)算是60000元,并規(guī)定袋中的4個(gè)球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場(chǎng)的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,請(qǐng)對(duì)袋中的4個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線(xiàn)上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸,離心率為,短軸長(zhǎng)為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),過(guò)橢圓左焦點(diǎn)的直線(xiàn)交于,兩點(diǎn),若對(duì)滿(mǎn)足條件的任意直線(xiàn),不等式恒成立,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com