【題目】已知拋物線的焦點(diǎn)為,直線與拋物線交于,兩點(diǎn),是坐標(biāo)原點(diǎn).

(1)若直線過點(diǎn),求直線的方程;

(2)已知點(diǎn),若直線不與坐標(biāo)軸垂直,且,證明:直線過定點(diǎn).

【答案】(1);(2).

【解析】

(1)法一:焦點(diǎn),當(dāng)直線斜率不存在時,方程為,說明不符合題意,故直線的斜率存在,設(shè)直線方程為聯(lián)立得,利用韋達(dá)定理轉(zhuǎn)化求解,求解直線方程.

法二:焦點(diǎn),顯然直線不垂直于軸,設(shè)直線方程為,與聯(lián)立得,設(shè),,利用韋達(dá)定理以及距離公式,轉(zhuǎn)化求解即可.

(2)設(shè),設(shè)直線方程為聯(lián)立得:,通過韋達(dá)定理以及斜率關(guān)系,求出直線系方程,即可推出結(jié)果.

解:(1)法一:焦點(diǎn),

當(dāng)直線斜率不存在時,方程為,與拋物線的交點(diǎn)坐標(biāo)分別為,

此時,不符合題意,故直線的斜率存在.

設(shè)直線方程為聯(lián)立得,

當(dāng)時,方程只有一根,不符合題意,故.,

拋物線的準(zhǔn)線方程為,

由拋物線的定義得,

解得,

所以方程為.

法二:焦點(diǎn),顯然直線不垂直于軸,設(shè)直線方程為,

聯(lián)立得,設(shè),,,.

,

,解得,

所以方程為.

(2)設(shè),,

設(shè)直線方程為聯(lián)立得:,

可得.

,即.

整理得,即,

整理得,

,即.

故直線方程為過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,

已知圓和圓.

1)若直線過點(diǎn),且被圓截得的弦長為,

求直線的方程;(2)設(shè)P為平面上的點(diǎn),滿足:

存在過點(diǎn)P的無窮多對互相垂直的直線,

它們分別與圓和圓相交,且直線被圓

截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個分點(diǎn)

(1)從這5個點(diǎn)中任取3個點(diǎn),求這3個點(diǎn)組成直角三角形的概率;

(2)在半圓內(nèi)任取一點(diǎn),求的面積大于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是等比數(shù)列,數(shù)列是等差數(shù)列,且 , , .

求(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為體育迷.若抽取100人中有女性55人,其中女體育迷有10人,完成答題卡中的列聯(lián)表并判斷能否在犯錯誤概率不超過0.05的前提下認(rèn)為體育迷與性別有關(guān)系?

非體育迷

體育迷

合計(jì)

10

55

合計(jì)

附表及公式:,.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱中,各棱長均為4, 分別是,的中點(diǎn).

(1)求證:平面;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)(a,bR)的導(dǎo)函數(shù)為,已知,的兩個不同的零點(diǎn).

(1)證明:

(2)當(dāng)b=0時,若對任意x>0,不等式恒成立,求a的取值范圍;

(3)求關(guān)于x的方程的實(shí)根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,,四邊形BDEF是矩形,平面平面ABCD,,HCF的中點(diǎn).

1)求證:平面BDEF

2)求直線DH與平面CEF所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:的右焦點(diǎn)為F,點(diǎn)A(一2,2)為橢圓C內(nèi)一點(diǎn)。若橢圓C上存在一點(diǎn)P,使得|PA|+|PF|=8,則m的最大值是___

查看答案和解析>>

同步練習(xí)冊答案