科目: 來源: 題型:
【題目】設(shè)函數(shù)(且)
(1)若函數(shù)存在零點,求實數(shù)的最小值;
(2)若函數(shù)有兩個零點分別是,且對于任意的時恒成立,求實數(shù)的取值集合.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,短軸的兩個頂點與,構(gòu)成面積為2的正方形.
(Ⅰ)求的方程;
(Ⅱ)直線與橢圓在軸的右側(cè)交于點,,以為直徑的圓經(jīng)過點,的垂直平分線交軸于點,且,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè),在集合的所有元素個數(shù)為2的子集中,把每個子集的較大元素相加和記為a,較小元素之和記為b.
(1)當(dāng)n=3時,求a, b的值;
(2)當(dāng)n=4時,求集合的所有3個元素子集中所有元素之和;
(3)對任意的,是否為定值?若是定值,請給出證明并求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】秸稈還田是當(dāng)今世界上普通重視的一項培肥地力的增產(chǎn)措施,在杜絕了秸稈焚燒所造成的大氣污染的同時還有增肥增產(chǎn)作用.某農(nóng)機戶為了達到在收割的同時讓秸稈還田,花元購買了一臺新型聯(lián)合收割機,每年用于收割可以收入萬元(已減去所用柴油費);該收割機每年都要定期進行維修保養(yǎng),第一年由廠方免費維修保養(yǎng),第二年及以后由該農(nóng)機戶付費維修保養(yǎng),所付費用(元)與使用年數(shù)的關(guān)系為:,已知第二年付費元,第五年付費元.
(1)試求出該農(nóng)機戶用于維修保養(yǎng)的費用(元)與使用年數(shù)的函數(shù)關(guān)系;
(2)這臺收割機使用多少年,可使平均收益最大?(收益=收入-維修保養(yǎng)費用-購買機械費用)
查看答案和解析>>
科目: 來源: 題型:
【題目】定義區(qū)間(m,n),,,的長度均為,其中.
(1)若關(guān)于x的不等式的解集構(gòu)成的區(qū)間的長度為,求實數(shù)a的值;
(2)求關(guān)于x的不等式的解集構(gòu)成的區(qū)間的長度的取值范圍;
(3)已知關(guān)于x的不等式組的解集構(gòu)成的各區(qū)間長度和為5,求實數(shù)t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,(為參數(shù)),直線的參數(shù)方程為(為參數(shù),為實數(shù)),直線與曲線交于 兩點.
(1)若,求的長度;
(2)當(dāng)面積取得最大值時(為原點),求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),,其中為常數(shù),是自然對數(shù)的底數(shù).
(1)設(shè),若函數(shù)在區(qū)間上有極值點,求實數(shù)的取值范圍;
(2)證明:當(dāng)時,恒成立.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合M是具有下列性質(zhì)的函數(shù)的全體:存在實數(shù)對,使得對定義域內(nèi)任意實數(shù)x都成立.
(1)判斷函數(shù),是否屬于集合;
(2)若函數(shù)具有反函數(shù),是否存在相同的實數(shù)對,使得與同時屬于集合若存在,求出相應(yīng)的;若不存在,說明理由;
(3)若定義域為的函數(shù)屬于集合,且存在滿足有序?qū)崝?shù)對和;當(dāng)時,的值域為,求當(dāng)時函數(shù)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com