相關(guān)習(xí)題
 0  212714  212722  212728  212732  212738  212740  212744  212750  212752  212758  212764  212768  212770  212774  212780  212782  212788  212792  212794  212798  212800  212804  212806  212808  212809  212810  212812  212813  212814  212816  212818  212822  212824  212828  212830  212834  212840  212842  212848  212852  212854  212858  212864  212870  212872  212878  212882  212884  212890  212894  212900  212908  266669 

科目: 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1的右焦點為F1(3,0),設(shè)直線y=kx與橢圓相交于A、B兩點,M、N分別為線段AF1,BF1的中點,若坐標(biāo)原點O在以MN為直徑的圓上,請運用橢圓的幾何性質(zhì)證明線段|AB|的長是定值.

查看答案和解析>>

科目: 來源: 題型:

如圖,如圖,A,B是圓O上的兩點,且OA⊥OB,OA=2,C為OA的中點,連接BC并延長交圓O于點D,則CD=
 

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x2-4ax+2a+12的值域為集合M,集合N={y|y=
x
},M∩N=M.
(1)求實數(shù)a的取值范圍;
(2)求關(guān)于x的方程
x
a+2
=|a-1|+2的根的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖所示,已知雙曲線
x2
a2
-
y2
b2
=1,A、B為雙曲線的兩個頂點.
(1)當(dāng)a=2,b=
3
,直線l:y=x-4與雙曲線交于C、D兩點,求線段CD的長度;
(2)在x軸上是否存在這樣一個定點M(λ,0),過M的直線與雙曲線有兩個交點C、D,并且無論怎么旋轉(zhuǎn)直線CD(在保證直線和雙曲線有兩個交點的前提下),始終CA⊥AD.如果存在,請求出λ的值;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,且過點P(1,
3
2
).
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左、右焦點分別為F1、F2,過點F2的直線l與橢圓C交于M、N兩點,當(dāng)直線l的傾斜角為45°時,求|MN|的長.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ax2+x-xlnx,
(1)若a=0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(1)=2,且在定義域內(nèi)f(x)≥bx2+2x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=aex(x+1)(其中e=2.71828…),g(x)=x2+bx+2,已知它們在x=0處有相同的切線.
(Ⅰ)求函數(shù)f(x),g(x)的解析式;
(Ⅱ)求函數(shù)f(x)在[t,t+1](t>-3)上的最小值;
(Ⅲ)判斷函數(shù)F(x)=2f(x)-g(x)+2零點個數(shù).

查看答案和解析>>

科目: 來源: 題型:

如圖所示,已知橢圓C的兩個焦點分別為F1(-1,0)、F2(1,0),且F2到直線x-
3
y-9=0的距離等于橢圓的短軸長.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若圓P的圓心為P(0,t)(t>0),且經(jīng)過F1、F2,Q是橢圓C上的動點且在圓P外,過Q作圓P的切線,切點為M,當(dāng)|QM|的最大值為
3
2
2
時,求t的值.

查看答案和解析>>

科目: 來源: 題型:

拋物線C1:y2=4x的焦點與橢圓C2
x2
a2
+
y2
b2
=1(a>b>0)
的一個焦點相同.設(shè)橢圓的右頂點為A,C1,C2在第一象限的交點為B,O為坐標(biāo)原點,且△OAB的面積為
6
3
a

(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)過A點作直線l交C1于C,D兩點,連接OC,OD分別交C2于E,F(xiàn)兩點,記△OEF,△OCD的面積分別為S1,S2.問是否存在上述直線l使得S2=3S1,若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
6
3
,右焦點F到直線
x
a
+
y
b
=0
的距離為1.
(Ⅰ)求橢圓方程;
(Ⅱ)已知點M,N為橢圓的長軸的兩個端點,作不平行于坐標(biāo)軸的割線AB,若滿足∠AFM=∠BFN,求證:割線AB恒經(jīng)過一定點.

查看答案和解析>>

同步練習(xí)冊答案