已知函數(shù)f(x)=ax2+x-xlnx,
(1)若a=0,求函數(shù)f(x)的單調區(qū)間;
(2)若f(1)=2,且在定義域內f(x)≥bx2+2x恒成立,求實數(shù)b的取值范圍.
考點:導數(shù)在最大值、最小值問題中的應用,利用導數(shù)研究函數(shù)的單調性
專題:綜合題,導數(shù)的綜合應用
分析:(1)求導數(shù),利用導數(shù)的正負,即可求函數(shù)f(x)的單調區(qū)間;
(2)由已知,求得f(x)=x2+x-xlnx.將不等式f(x)≥bx2+2x恒成立轉化為b≤1-
1
x
-
lnx
x
恒成立.構造函數(shù)g(x)=1-
1
x
-
lnx
x
,只需b≤g(x)min即可,因此又需求g(x)min.
解答: 解:(1)當a=0時,f(x)=x-xlnx,函數(shù)定義域為(0,+∞).
f'(x)=-lnx,由-lnx=0,得x=1.-------------(3分)
x∈(0,1)時,f'(x)>0,f(x)在(0,1)上是增函數(shù).x∈(1,+∞)時,f'(x)<0,f(x)在(1,+∞)上是減函數(shù);-------------(6分)
(2)由f(1)=2,得a+1=2,∴a=1,∴f(x)=x2+x-xlnx,
由f(x)≥bx2+2x,得(1-b)x-1≥lnx,
又∵x>0,∴b≤1-
1
x
-
lnx
x
恒成立,-------------(9分)
g(x)=1-
1
x
-
lnx
x
,可得g′(x)=
lnx
x2
,∴g(x)在(0,1]上遞減,在[1,+∞)上遞增.
∴g(x)min=g(1)=0
即b≤0,即b的取值范圍是(-∞,0].----------(12分)
點評:本題考查導數(shù)知識的應用,考查學生會利用導函數(shù)的正負確定函數(shù)的單調區(qū)間,掌握函數(shù)恒成立時所取的條件,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x+y-1≤0
3x-y+1≥0
x-y-1≤0
,若z=mx+y僅在點(1,0)處取得最大值,則實數(shù)m的取值范圍是( 。
A、(1,+∞)
B、(-1,+∞)
C、(-∞,1)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2分別為橢圓C::
x2
a2
+
y2
b2
=1(a>b>0)的左右兩個焦點.若M、N是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPM、kPN.求證:kpM、kpN是與點P位置無關的定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(
3
,-
3
2
)
,且橢圓的離心率e=
1
2
,過橢圓的右焦點F作兩條互相垂直的直線,分別交橢圓于點A、B及C、D.
(Ⅰ)求橢圓的方程;
(Ⅱ)求證:
1
|AB|
+
1
|CD|
為定值;
(Ⅲ)求|AB|+
9
16
|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點Q(4,1)作拋物線y2=8x的弦AB,恰被Q平分.
(1)求AB所在的直線方程.
(2)求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1的右焦點為F1(3,0),設直線y=kx與橢圓相交于A、B兩點,M、N分別為線段AF1,BF1的中點,若坐標原點O在以MN為直徑的圓上,請運用橢圓的幾何性質證明線段|AB|的長是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2分別是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,P是橢圓E上的點,以F1P為直徑的圓經(jīng)過F2,
PF1
PF2
=
1
16
a2
.直線l經(jīng)過F1,與橢圓E交于A、B兩點,F(xiàn)2與A、B兩點構成△ABF2
(1)求橢圓E的離心率;
(2)設△F1PF2的周長為2+
3
,求△ABF2的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:
x2
m+2
+
y2
3-m
=1
(m∈R).
(Ⅰ)若曲線C是焦點在x軸上的橢圓,求m的取值范圍;
(Ⅱ)設m=2,過點D(0,4)的直線l與曲線C交于M,N兩點,O為坐標原點,若∠OMN為直角,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,PA為圓O的切線,A為切點,PO交圓O于B,C兩點,PA=20,PB=10,∠BAC的角平分線與BC和圓O分別交于點D和E.
(Ⅰ)求證AB•PC=PA•AC
(Ⅱ)求AD•AE的值.

查看答案和解析>>

同步練習冊答案