已知函數(shù)f(x)=x2-4ax+2a+12的值域?yàn)榧螹,集合N={y|y=
x
},M∩N=M.
(1)求實(shí)數(shù)a的取值范圍;
(2)求關(guān)于x的方程
x
a+2
=|a-1|+2的根的取值范圍.
考點(diǎn):函數(shù)的值域,函數(shù)的零點(diǎn)與方程根的關(guān)系
專(zhuān)題:分類(lèi)討論,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)先求出集合N,根據(jù)M是N的子集求出a的取值范圍.
(2)在第(1)的基礎(chǔ)上對(duì)a進(jìn)行分類(lèi)討論,利用配方法求出x的取值范圍.
解答: 解:(1)∵y=
x
≥0
,∴N∈[0,+∞),
又∵M(jìn)∩N=M,∴M⊆N,即M⊆[0,+∞),
∴f(x)=x2-4ax+2a+12中的△=16a2-4(2a+12)≤0解得-
3
2
≤a≤2

所以后a的取值范圍是[-
3
2
,2]

(2)當(dāng)a∈[-
3
2
,1]
時(shí),
x
a+2
=-(a-1)+2
,x=-(a-
1
2
)2+
25
4
,∴x∈[
9
4
,
25
4
]
,
當(dāng)a∈(1,2]時(shí),
x
a+2
=(a-1)+2
,x=(a+
3
2
)2-
1
4
,∴x∈(6,12],
所以x的取值范圍是[
9
4
,12]
點(diǎn)評(píng):一、是對(duì)二次函數(shù)解析的式中參數(shù)的討論,二、是去絕對(duì)值時(shí)要對(duì)未知參數(shù)進(jìn)行討論.分類(lèi)討論是高中數(shù)學(xué)的一個(gè)重點(diǎn),也是一個(gè)難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿(mǎn)足
x-y+1≥0
x+y-4≤0
y≥1
,則xy的最大值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫(huà)出一個(gè)計(jì)算“1-3+5-7+…+2011-2013”的值的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的值域:
(1)f(x)=2x2-3x-1;
(2)f(x)=
x2+2x
x2-x
;
(3)f(x)=x+
x+1
;
(4)f(x)=2x-
x+2
;
(5)f(x)=
x2-1
x2+1

(6)f(x)=5-x+
3x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(-1,0)、F2(1,0),且F2到直線(xiàn)x-
3
y-9=0的距離等于橢圓的短軸長(zhǎng).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若圓P的圓心為P(0,t)(t>0),且經(jīng)過(guò)F1、F2,Q是橢圓C上的動(dòng)點(diǎn)且在圓P外,過(guò)Q作圓P的切線(xiàn),切點(diǎn)為M,當(dāng)|QM|的最大值為
3
2
2
時(shí),求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),若橢圓C的一個(gè)焦點(diǎn)為F(
2
,0),其短軸上的一個(gè)端點(diǎn)到F的距離為
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)已知斜率為k(k≠0)的直線(xiàn)l與橢圓C交于不同的兩點(diǎn)A,B,點(diǎn)Q滿(mǎn)足
AQ
=
QB
NQ
AB
=0,其中N為橢圓的下頂點(diǎn),求直線(xiàn)在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-c,0)、F2(c,0)是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn),點(diǎn)M在橢圓E上.
(Ⅰ)若∠F1MF2的最大值是
π
2
,求橢圓E的離心率;
(Ⅱ)設(shè)直線(xiàn)x=my+c與橢圓E交于P、Q兩點(diǎn),過(guò)P、Q兩點(diǎn)分別作橢圓E的切線(xiàn)l1,l2,且l1與l2交于點(diǎn)R,試問(wèn):當(dāng)m變化時(shí),點(diǎn)R是否恒在一條定直線(xiàn)上?若是,請(qǐng)寫(xiě)出這條直線(xiàn)方程,并證明你的結(jié)論;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1的底面是正三角形,點(diǎn)M、N分別是B1C1和A1B1的中點(diǎn),AA1=AB=BM=2,∠A1AB=60°.
(Ⅰ)求證:BN⊥平面A1B1C1;
(Ⅱ)求二面角A1-AB-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,且點(diǎn)(
2
6
2
)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)A,B分別是橢圓C的左右頂點(diǎn),直線(xiàn)經(jīng)過(guò)點(diǎn)B且垂直于x軸,點(diǎn)P是橢圓C上異于點(diǎn)A,B的任意一點(diǎn),直線(xiàn)AP交于點(diǎn)M,設(shè)直線(xiàn)OM,PB的斜率分別為k1,k2,求證:k1•k2為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案