相關(guān)習(xí)題
 0  209385  209393  209399  209403  209409  209411  209415  209421  209423  209429  209435  209439  209441  209445  209451  209453  209459  209463  209465  209469  209471  209475  209477  209479  209480  209481  209483  209484  209485  209487  209489  209493  209495  209499  209501  209505  209511  209513  209519  209523  209525  209529  209535  209541  209543  209549  209553  209555  209561  209565  209571  209579  266669 

科目: 來(lái)源: 題型:

已知a和b是任意非零實(shí)數(shù).
(1)求證
|2a+b|+|2a-b|
|a|
≥4
;
(2)若不等式|a+b|+|a-b|≥|a(|2+x|+|2-x|)恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿足a3a6=55,a2+a7=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前項(xiàng)和Tn

查看答案和解析>>

科目: 來(lái)源: 題型:

已知等差數(shù)列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的兩根,數(shù)列{bn}的前n項(xiàng)的和為Sn,且Sn=1-
1
2
bn
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;  
(2)記cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)若PA=1,AD=2,求二面角B-PC-A的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

在等差數(shù)列{an}中,a1=2,a1+a2+a3=6.
(1)求數(shù)列{an}的通項(xiàng)公式;   
(2)令bn=an•3n,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目: 來(lái)源: 題型:

已知極坐標(biāo)系的原點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸為x軸正半軸,直線l的參數(shù)方程為
x=-1+
3
t
y=t
(t為參數(shù)),曲線C的極坐標(biāo)方程為p=4cosθ.
(1)寫出C的直角坐標(biāo)方程,并說(shuō)明C是什么曲線?
(2)設(shè)直線l與曲線C相交于P,Q兩點(diǎn),求|PQ|.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為1,公差為d的等差數(shù)列;數(shù)列{bn}是公比為2的等比數(shù)列,且{bn}的前4項(xiàng)的和為
15
2

(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若d=3,求數(shù)列{an}中滿足b8≤ai≤b9(i∈N*)的所有項(xiàng)ai的和;
(3)設(shè)數(shù)列{cn}滿足cn=an•bn,數(shù)列{cn}的前n項(xiàng)和為Tn,若Tn的最大值為T5,求公差d的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知數(shù)列{an}是公差不為0的等差數(shù)列,且a1,a4,a13成等比數(shù)列,S3=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足對(duì)于任意n∈N+都有Sn=2n-1,求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來(lái)源: 題型:

已知a∈R,設(shè)函數(shù)f(x)=3x-alnx+1
(1)若a=3e(e為自然常數(shù)),求函數(shù)f(x)在[0,2e]上的最小值;
(2)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,在四棱椎P-ABCD中,PD⊥平面ABCD,四邊形ABCD是邊長(zhǎng)為2的菱形,∠ABC=
3
,PD=2
3
,E是PB的中點(diǎn).
(Ⅰ)求證:平面AEC⊥平面PDB;
(Ⅱ)求三棱錐D-BCE的體積VD-BCE

查看答案和解析>>

同步練習(xí)冊(cè)答案