已知極坐標系的原點在直角坐標系的原點處,極軸為x軸正半軸,直線l的參數(shù)方程為
x=-1+
3
t
y=t
(t為參數(shù)),曲線C的極坐標方程為p=4cosθ.
(1)寫出C的直角坐標方程,并說明C是什么曲線?
(2)設(shè)直線l與曲線C相交于P,Q兩點,求|PQ|.
考點:簡單曲線的極坐標方程,參數(shù)方程化成普通方程
專題:坐標系和參數(shù)方程
分析:(1)把曲線C的極坐標方程利用x=ρcosθ,y=ρsinθ化為直角坐標方程,可得它表示的曲線.
(2)把直線l的參數(shù)方程消去參數(shù),化為普通方程為x-
3
y+1=0,求出弦心距d的值,再利用弦長公式求得弦長
解答: 解:(1)曲線C的極坐標方程為p=4cosθ,即 ρ2=4ρcosθ,化為直角坐標方程為(x-2)2+y2=4,
表示以(2,0)為圓心、半徑等于2的圓.
(2)把直線l的參數(shù)方程為
x=-1+
3
t
y=t
(t為參數(shù)),消去參數(shù),化為普通方程為x-
3
y+1=0,
弦心距d=
|2-0+1|
1+3
=
3
2
,故弦長為 2
r2-d2
=2
4-
9
4
=
7
點評:本題主要考查把參數(shù)方程、極坐標化為直角坐標方程的方法,點到直線的距離公式、弦長公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有一條直線與拋物線y=x2相交于A,B兩點,線段AB與拋物線所圍成的面積恒等于
4
3
,求線段AB的中點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=2,a6+a8=14
(1)求數(shù)列{an}的通項公式
(2)求數(shù)列{
an
2n
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,且a2=6,a5=162.
(1)求數(shù)列{an}的通項公式an
(2)求數(shù)列{an}的前N項和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+3mx2+nx+m2.在x=-1處有極值0;
(Ⅰ)求m,n的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a和b是任意非零實數(shù).
(1)求證
|2a+b|+|2a-b|
|a|
≥4

(2)若不等式|a+b|+|a-b|≥|a(|2+x|+|2-x|)恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a9=
1
7
,an+1=
an
3an+1

(1)求證:數(shù)列{
1
an
}為等差數(shù)列;
(2)求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A1,A2雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的頂點,B為雙曲線C的虛軸一個端點.若△A1BA2是等邊三角形,則雙曲線C的離心率e等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的定義域為[-1,5],部分對應(yīng)值如下表,y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.下列關(guān)于y=f(x)的命題:
x-1045
f(x)1221
①函數(shù)y=f′(x)極大值點x0∈(2,4)
②函數(shù)y=f(x)的極小值點有兩個
③函數(shù)y=f(x)在[0,2]上是減函數(shù);
④函數(shù)y=f(x)的圖象與x軸有2個交點
其中正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案