相關(guān)習(xí)題
 0  158264  158272  158278  158282  158288  158290  158294  158300  158302  158308  158314  158318  158320  158324  158330  158332  158338  158342  158344  158348  158350  158354  158356  158358  158359  158360  158362  158363  158364  158366  158368  158372  158374  158378  158380  158384  158390  158392  158398  158402  158404  158408  158414  158420  158422  158428  158432  158434  158440  158444  158450  158458  266669 

科目: 來源:不詳 題型:解答題

已知函數(shù)處取得極值.
(1)求的值;                                                    
(2)若關(guān)于的方程在區(qū)間上有實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知函數(shù),不等式恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知定點(diǎn)A(a,O)( a >0),Bx軸負(fù)半軸上的動(dòng)點(diǎn).以AB為邊作菱形ABCD,使其兩對(duì)角線的交點(diǎn)恰好落在y軸上.
(I)求動(dòng)點(diǎn)D的軌跡E的方程;
(Ⅱ)過點(diǎn)A作直線l與軌跡E交于P、Q兩點(diǎn),設(shè)點(diǎn)R (- a,0),問當(dāng)l繞點(diǎn)A轉(zhuǎn)動(dòng)時(shí),∠PRQ是否可以為鈍角?請(qǐng)給出結(jié)論,并加以證明.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本題滿分14分)已知的圖象上任意兩點(diǎn),設(shè)點(diǎn),且,若,其中,且
(1)求的值;
(2)求;
(3)數(shù)列,當(dāng)時(shí),,設(shè)數(shù)列的前項(xiàng)和為
的取值范圍使對(duì)一切都成立。

查看答案和解析>>

科目: 來源:不詳 題型:解答題


 
產(chǎn)品A(件)
產(chǎn)品B(件)
 
研制成本、搭載費(fèi)用之和(萬元)
20
30
計(jì)劃最大資金額300萬元
產(chǎn)品重量(千克)
10
5
最大搭載重量110千克
預(yù)計(jì)收益(萬元)
80
60
 
如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知.
(I)當(dāng)時(shí),解不等式;
(II)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題



(Ⅰ)將日利潤(rùn)y(元)表示成日產(chǎn)量x(件)的函數(shù);
(Ⅱ)求該廠的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?并求出日利潤(rùn)的最大值

查看答案和解析>>

科目: 來源:不詳 題型:解答題

甲乙兩公司生產(chǎn)同一種新產(chǎn)品,經(jīng)測(cè)算,對(duì)于函數(shù),及任意的,當(dāng)甲公司投入萬元作宣傳時(shí),乙公司投入的宣傳費(fèi)若小于萬元,則乙公司有失敗的危險(xiǎn),否則無失敗的危險(xiǎn);當(dāng)乙公司投入萬元作宣傳時(shí),甲公司投入的宣傳費(fèi)若小于萬元,則甲公司有失敗的危險(xiǎn),否則無失敗的危險(xiǎn). 設(shè)甲公司投入宣傳費(fèi)x萬元,乙公司投入宣傳費(fèi)y萬元,建立如圖直角坐標(biāo)系,試回答以下問題:
(1)請(qǐng)解釋;
(2)甲、乙兩公司在均無失敗危險(xiǎn)的情況下盡可能少地投入宣傳費(fèi)用,問此時(shí)各應(yīng)投入多少宣傳費(fèi)?
(3)若甲、乙分別在上述策略下,為確保無失敗的危險(xiǎn),根據(jù)對(duì)方所投入的宣傳費(fèi),按最少投入費(fèi)用原則,投入自己的宣傳費(fèi):若甲先投入萬元,乙在上述策略下,投入最少費(fèi)用;而甲根據(jù)乙的情況,調(diào)整宣傳費(fèi)為;同樣,乙再根據(jù)甲的情況,調(diào)整宣傳費(fèi)為如此得當(dāng)甲調(diào)整宣傳費(fèi)為時(shí),乙調(diào)整宣傳費(fèi)為;試問是否存在,的值,若存在寫出此極限值(不必證明),若不存在,說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

對(duì)于定義域?yàn)镈的函數(shù),若同時(shí)滿足下列條件:
在D內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[],使在[]上的值域?yàn)閇];那么把)叫閉函數(shù)。
(1)求閉函數(shù)符合條件②的區(qū)間[];
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若是閉函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目: 來源:不詳 題型:解答題

.設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的正實(shí)數(shù)x, y,均有
f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0。
(1)求f(1), f()的值;
(2)試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;
(3)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{a­n}滿足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是數(shù)列{an}的前n項(xiàng)和,求數(shù)列{an}的通項(xiàng)公式;
(4)在(3)的條件下,是否存在正數(shù)M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)對(duì)于一切n∈N*均成立?若存在,求出M的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案