已知函數(shù)f(x)=x2-1,(x∈[2,6]).
(1)求函數(shù)單調(diào)性;
(2)求函數(shù)最大值和最小值.
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由二次函數(shù)f(x)的圖象的對(duì)稱軸為y軸,且圖象是開口向上的拋物線,可得函數(shù)f(x)=x2-1在[2,6]上的單調(diào)性.
(2)利用函數(shù)f(x)=x2-1在[2,6]上是增函數(shù),求得函數(shù)最大值和最小值.
解答: 解:(1)由二次函數(shù)f(x)的圖象的對(duì)稱軸為y軸,且圖象是開口向上的拋物線,
可得函數(shù)f(x)=x2-1在[2,6]上是增函數(shù).
(2)利用函數(shù)f(x)=x2-1在[2,6]上是增函數(shù),可得最小值為f(2)=3,
最大值為f(6)=35.
點(diǎn)評(píng):本題主要考查二次函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)把下列的極坐標(biāo)方程化為直角坐標(biāo)方程(并說明對(duì)應(yīng)的曲線):
①ρ=-4cosθ+2sinθ           
②ρcos(θ-
π
4
)=
2

(2)把下列的參數(shù)方程化為普通方程(并說明對(duì)應(yīng)的曲線):
x=4tanφ
y=3secφ
(θ為參數(shù))        
x=sinθ
y=cos2θ-7
(θ為參數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的非常值函數(shù),且對(duì)任意的x,y∈R有f(x+y)=f(x)f(y).
(1)證明:f(0)=1;
(2)設(shè)A={(x,y)|f(x2)f(y2)<f(1)},B={(x,y)|f(x+y+m)=1},若f(x)在R上是單調(diào)增函數(shù),且A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖ABCD是邊長為8
2
的正方形,E,F(xiàn)分別為AD,AB的中點(diǎn),PC⊥平面ABCD,PC=3,G,H分別為PE,PF的中點(diǎn),
(1)求證:EF∥面GHC;
(2)在PC上確定一點(diǎn)M,使平面MBD∥平面PEF,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=1是f(x)=2x+
b
x
+lnx的一個(gè)極值點(diǎn)
(Ⅰ)求b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x(x-c)2在x=2處有極小值,則f(x)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知C
 
0
n
+2C
 
1
n
+22C
 
2
n
+…+2nC
 
n
n
=729,則C
 
1
n
+C
 
3
n
+…=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-x2+x,則f(x)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2x+4
x-1
,x∈[0,3]且x≠1的值域?yàn)?div id="ebzzk36" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案