已知函數(shù)f(z)=2z+z2+(1+i),則f(i)的值是
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應用
分析:利用函數(shù)的性質(zhì)和復數(shù)概念求解.
解答: 解:∵f(z)=2z+z2+(1+i),
∴f(i)=2i+i2+(1+i)
=2i-1+1+i
=3i.
故答案為:3i.
點評:本題考查函數(shù)值的求法,解題時要認真審題,注意復數(shù)性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)m,n滿足
m
1+i
=1-ni(其中i是虛數(shù)單位),求雙曲線mx2-ny2=1的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a∈R,解關(guān)于x的不等式x2-x-a2+a>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)設(shè)f(x)=
x2(x≤0)
cosx-1(x>0)
試求
π
2
-1
f(x)dx.
(2)求函數(shù)y=
1
3
x與y=x-x2圍成封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足:當x>0時,f(x)=2x+log2x,則在R上,函數(shù)f(x)零點的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)A,B分別為橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點,F(xiàn)為右焦點,l為Γ在點B處的切線,P為Γ上異于A,B的一點,直線AP交l于D,M為BD中點,有如下結(jié)論:
①FM平分∠PFB;     
②PM與橢圓Γ相切;
③PM平分∠FPD;    
④使得PM=BM的點P不存在.
其中正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x2+2x+3在[-1,5]上的值域是
 
,單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下命題:①函數(shù)f(x)=|log2x2|既無最大值也無最小值;
②函數(shù)f(x)=|x2-2x-3|的圖象關(guān)于直線x=1對稱;
③若函數(shù)f(x)的定義域為(0,1),則函數(shù)f(x2)的定義域為(-1,1);
④若函數(shù)f(x)滿足|f(-x)|=|f(x)|,則函數(shù)f(x)或是奇函數(shù)或是偶函數(shù);
⑤設(shè)定義在R上的函數(shù)f(x)滿足對任意x1,x2∈R,x1<x2,有f(x1)-f(x2)<x1-x2恒成立,則函數(shù)F(x)=f(x)-x在R上遞增.其中正確的命題是
 
.(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F2(3,0),離心率為e.
(Ⅰ)若e=
3
2
,求橢圓的方程;
(Ⅱ)設(shè)直線y=kx(k>0)與橢圓相交于A,B兩點,若
AF2
BF2
=0,求k2+
81
a4-18a2
的值.

查看答案和解析>>

同步練習冊答案