設(shè)A,B分別為橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點(diǎn),F(xiàn)為右焦點(diǎn),l為Γ在點(diǎn)B處的切線,P為Γ上異于A,B的一點(diǎn),直線AP交l于D,M為BD中點(diǎn),有如下結(jié)論:
①FM平分∠PFB;     
②PM與橢圓Γ相切;
③PM平分∠FPD;    
④使得PM=BM的點(diǎn)P不存在.
其中正確結(jié)論的序號(hào)是
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:不妨取P為上頂點(diǎn),驗(yàn)證知①②成立,于是PM平分∠BPD,故③不成立;若PA⊥PB,則PM為Rt△BDP的斜邊中線,PM=BM,這樣的P有4個(gè),故④不成立.
解答: 解:不妨取P為上頂點(diǎn),則P(0,b),M(a,b),F(xiàn)(c,0),則
kFM=
b
a-c
,kPF=-
b
c
,∴tan∠PFM=
-
b
c
-
b
a-c
1+(-
b
c
)•
b
a-c
=
b
a-c
,
∴∠PFM=∠MFB,∴FM平分∠PFB,即①成立;
由于P(0,b),M(a,b),∴PM與橢圓Γ相切,即②成立;
于是PM平分∠BPD,故③不成立;
若PA⊥PB,則PM為Rt△BDP的斜邊中線,PM=BM,這樣的P有4個(gè),故④不成立.
故答案為:①②.
點(diǎn)評(píng):本題考查橢圓的性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
(2a+1)x2+(a2+a)x.
(I)若a=1,求f(x)在區(qū)間[0,3]上的值域;
(Ⅱ)若g(x)=f(x)+ax2-a2x,求函數(shù)g(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)設(shè)備的使用年限x(年)與維修費(fèi)用y(萬元)有如下關(guān)系:
x23456
y2.23.85.56.57.0
(1)求樣本中心;
(2)如果y與x之間具有線性相關(guān)關(guān)系,求回歸直線方程
y
=bx+a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=-x2+mx在(-∞,1]上是增函數(shù),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(z)=2z+z2+(1+i),則f(i)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:x2-4x-5≤0,q:|x-3|<a(a>0),若p是q的充分不必要條件,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是雙曲線x2-
y2
m
=1的左右焦點(diǎn),過點(diǎn)F2作與x軸垂直的直線和雙曲線的一個(gè)交點(diǎn)為A,且滿足|AF1|=
2
|AF2|,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,1),
b
=(-2,3 ),若λ
a
-
b
a
垂直,則實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=2cosα
y=2sinα
(α為參數(shù)),O為坐標(biāo)原點(diǎn),M為C1上的動(dòng)點(diǎn),P點(diǎn)滿足
OP
=2
OM
,點(diǎn)P的軌跡為曲線C2.則C2的參數(shù)方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案