函數(shù)f(x)=-x2+2x+3在[-1,5]上的值域是
 
,單調(diào)遞增區(qū)間是
 
考點:二次函數(shù)的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應用
分析:配方,根據(jù)一元二次函數(shù)的單調(diào)區(qū)間求函數(shù)的最大、最小值即可.
解答: 解:f(x)=-(x-1)2+4,函數(shù)在[-1,1]上遞增;在[1,5]上遞減,
∵f(-1)<f(5),
∴最大值是f(1)=4,最小值是f(5)=-12.
∴函數(shù)的值域是[-12,4].
故答案為:[-12,4];[-1,1].
點評:本題考查函數(shù)的值域,考查函數(shù)的單調(diào)性,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知作用于某一質(zhì)點的力F(x)=
x2,0≤x≤1
x+1,1<x≤2
(單位:N),試求力F(x)從x=0處運動到x=2處(單位:m)所做的功.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}中,b2=5,且公差d=2.
(1)求數(shù)列{an},{bn}的通項公式;
(2)是否存在正整數(shù)n,使得a1b1+a2b2+…+anbn>60n?若存在,求n的最小值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(z)=2z+z2+(1+i),則f(i)的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=log
1
2
(x-x2)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2分別是雙曲線x2-
y2
m
=1的左右焦點,過點F2作與x軸垂直的直線和雙曲線的一個交點為A,且滿足|AF1|=
2
|AF2|,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=k(x+
1
4
)與曲線y=
x
恰有兩個不同交點,記k的所有可能取值構(gòu)成集合A;P(x,y)是橢圓
x2
16
+
y2
9
=l上一動點,點P1(x1,y1)與點P關于直線y=x+l對稱,記
y1-1
4
的所有可能取值構(gòu)成集合B,若隨機地從集合A,B中分別抽出一個元素λ1,λ2,則λ1>λ2的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
log2x,x>0
g(x),x<0
,且f(x)為奇函數(shù),則g(-4)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓臺的上、下底面半徑和高的比為1:4:4,母線長為10,則圓臺的側(cè)面積為
 

查看答案和解析>>

同步練習冊答案