設l,m,n表示不同的直線,α,β,γ表示不同的平面,給出下列四個命題:
①若m∥l,且m⊥α,則l⊥α;
②若m∥l,且m∥α,則l∥α;
③若α∩β=l,β∩γ=m,γ∩α=n,則l∥m∥n;
④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,則l∥m.
其中正確命題的個數(shù)是________.
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-2直線的交點坐標與距離公式(解析版) 題型:選擇題
已知直線l的傾斜角為,直線l1經(jīng)過點A(3,2)和B(a,-1),且直線l1與直線l垂直,直線l2的方程為2x+by+1=0,且直線l2與直線l1平行,則a+b等于( )
A.-4 B.-2 C.0 D.2
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-6空間向量及運算(解析版) 題型:填空題
已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,則以b,c為方向向量的兩直線的夾角為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-5直線、平面垂直的判定及性質(解析版) 題型:選擇題
如圖,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,則C1在底面ABC上的射影H必在( )
A.直線AB上 B.直線BC上
C.直線AC上 D.△ABC內部
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-4直線、平面平行的判定及性質(解析版) 題型:選擇題
已知α,β是兩個不同的平面,給出下列四個條件:
①存在一條直線a,a⊥α,a⊥β;
②存在一個平面γ,γ⊥α,γ⊥β;
③存在兩條平行直線a,b,a?α,b?β,a∥β,b∥α;
④存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α.
可以推出α∥β的是( )
A.①③ B.②④ C.①④ D.②③
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-4直線、平面平行的判定及性質(解析版) 題型:選擇題
設m,n是平面α內的兩條不同直線;l1,l2是平面β內的兩條相交直線,則α∥β的一個充分而不必要條件是( )
A.m∥β且l1∥α B.m∥l1且n∥l2
C.m∥β且n∥β D.m∥β且n∥l2
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-3空間點直線平面之間的位置關系(解析版) 題型:解答題
A是△BCD平面外的一點,E,F(xiàn)分別是BC,AD的中點.
(1)求證:直線EF與BD是異面直線;
(2)若AC⊥BD,AC=BD,求EF與BD所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-2空間幾何體的表面積和體積(解析版) 題型:選擇題
如圖,在多面體ABCDEF中,已知四邊形ABCD是邊長為1的正方形,且△ADE,△BCF均為正三角形,EF∥AB,EF=2,則該多面體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-5合情推理與演繹推理(解析版) 題型:填空題
觀察下列等式:
可以推測:13+23+33+…+n3=________(n∈N*,用含n的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com