如圖,在多面體ABCDEF中,已知四邊形ABCD是邊長(zhǎng)為1的正方形,且△ADE,△BCF均為正三角形,EF∥AB,EF=2,則該多面體的體積為(  )

A. B. C. D.

 

 

A

【解析】本題主要考查幾何體體積的求法,解題的關(guān)鍵是將不規(guī)則的幾何體分別分割成規(guī)則的幾何體.

如圖,過A,B兩點(diǎn)分別作AM,BN垂直于EF,垂足分別為M,N,連接DM,CN,可證得DM⊥EF,CN⊥EF,多面體ABCDEF分為三部分,多面體的體積為VABCDEF=VAMD-BNC+VE-AMD+VF-BNC.

∵NF=,BF=1,∴BN=

作NH垂直BC于點(diǎn)H,則H為BC的中點(diǎn),

則NH=

∴S△BNC=·BC·NH=×1×

∴VF-BNC=·S△BNC·NF=,

VE-AMD=VF-BNC=,

VAMD-BNC=S△BNC·MN=

∴VABCDEF=

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-7立體幾何中的向量方法(解析版) 題型:填空題

如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E、F分別是棱BC、DD1上的點(diǎn),如果B1E⊥平面ABF,則CE與DF的和的值為________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:填空題

設(shè)l,m,n表示不同的直線,α,β,γ表示不同的平面,給出下列四個(gè)命題:

①若m∥l,且m⊥α,則l⊥α;

②若m∥l,且m∥α,則l∥α;

③若α∩β=l,β∩γ=m,γ∩α=n,則l∥m∥n;

④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,則l∥m.

其中正確命題的個(gè)數(shù)是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-3空間點(diǎn)直線平面之間的位置關(guān)系(解析版) 題型:選擇題

如圖,正方體ABCD-A′B′C′D′的棱長(zhǎng)為4,動(dòng)點(diǎn)E、F在棱AB上,且EF=2,動(dòng)點(diǎn)Q在棱D′C′上,則三棱錐A′-EFQ的體積(  )

A.與點(diǎn)E、F的位置有關(guān)

B.與點(diǎn)Q的位置有關(guān)

C.與點(diǎn)E、F、Q的位置都有關(guān)

D.與點(diǎn)E、F、Q的位置均無關(guān),是定值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-2空間幾何體的表面積和體積(解析版) 題型:填空題

某幾何體的三視圖如圖所示,其中正視圖是腰長(zhǎng)為2的等腰三角形,側(cè)視圖是半徑為1的半圓,則該幾何體的表面積是________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-2空間幾何體的表面積和體積(解析版) 題型:選擇題

如圖,某幾何體的正視圖是平行四邊形,側(cè)視圖和俯視圖都是矩形,則該幾何體的體積為(  )

A.6 B.9 C.8 D.12

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-7數(shù)學(xué)歸納法(解析版) 題型:填空題

已知f(n)=1++…+ (n∈N*),用數(shù)學(xué)歸納法證明f(2n)>時(shí),f(2k+1)-f(2k)等于________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-6直接證明與間接證明(解析版) 題型:選擇題

不相等的三個(gè)正數(shù)a、b、c成等差數(shù)列,并且x是a、b的等比中項(xiàng),y是b、c的等比中項(xiàng),則x2、b2、y2三數(shù)(  )

A.成等比數(shù)列而非等差數(shù)列

B.成等差數(shù)列而非等比數(shù)列

C.既成等差數(shù)列又成等比數(shù)列

D.既非等差數(shù)列又非等比數(shù)列

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-2一元二次不等式及其解法(解析版) 題型:解答題

已知關(guān)于x的不等式kx2-2x+6k<0(k≠0).

(1)若不等式的解集為{x|x<-3或x>-2},求k的值;

(2)若不等式的解集為{x|x∈R,x≠},求k的值;

(3)若不等式的解集為R,求k的取值范圍;

(4)若不等式的解集為∅,求k的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案