【題目】我國計劃發(fā)射火星探測器,該探測器的運行軌道是以火星(其半徑)的中心為一個焦點的橢圓.如圖,已知探測器的近火星點(軌道上離火星表面最近的點)到火星表面的距離為,遠火星點(軌道上離火星表面最遠的點)到火星表面的距離為.假定探測器由近火星點第一次逆時針運行到與軌道中心的距離為時進行變軌,其中分別為橢圓的長半軸、短半軸的長,求此時探測器與火星表面的距離(精確到).

【答案】

【解析】

根據(jù)題意求出軌道方程為,設(shè)變軌時,探測器位于,則,結(jié)合軌道方程求出,再利用兩點間的距離公式即可求解.

設(shè)所求軌道方程為

于是.所以所求軌道方程為

設(shè)變軌時,探測器位于,則

解方程組,得(由題意).

所以探測器在變軌時與火星表面的距離為

所以探測器在變軌時與火星表面的距離約為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一藝術(shù)拱門由兩部分組成,下部為矩形,的長分別為,上部是圓心為的劣弧,

1)求圖1中拱門最高點到地面的距離;

2)現(xiàn)欲以B點為支點將拱門放倒,放倒過程中矩形所在的平面始終與地面垂直,如圖2、圖3、圖4所示.設(shè)與地面水平線所成的角為.記拱門上的點到地面的最大距離為,試用的函數(shù)表示,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(I)求函數(shù)的極值;

(II)若方程僅有一個實數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知雙曲線設(shè)過點的直線l的方向向量

1) 當(dāng)直線l與雙曲線C的一條漸近線m平行時,求直線l的方程及lm的距離;

2) 證明:當(dāng)>時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,直線.

(1)證明:不論取什么數(shù),直線與圓恒交于兩點;

(2)求直線被圓截得的線段的最短長度,并求此時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了考察冰川的融化狀況,一支科考隊在某冰川山上相距8kmA、B兩點各建一個考察基地,視冰川面為平面形,以過A、B兩點的直線為x軸,線段AB的垂直平分線為y軸建立平面直角坐標(biāo)系(圖4).考察范圍到A、B兩點的距離之和不超過10km的區(qū)域.

I)求考察區(qū)域邊界曲線的方程:

II)如圖4所示,設(shè)線段是冰川的部分邊界線(不考慮其他邊界),當(dāng)冰川融化時,邊界線沿與其垂直的方向朝考察區(qū)域平行移動,第一年移動0.2km,以后每年移動的距離為前一年的2倍.問:經(jīng)過多長時間,點A恰好在冰川邊界線上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三個圓交于一點,又兩兩將于點、.以為圓心的一個圓與上述三個圓分別交于點,,,其中,點在不含點的圓上,等等.又設(shè)、、的外接圓交于一點, 、的外接圓交于一點.證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】p:關(guān)于x的方程無解,q

1)若時,“”為真命題,“”為假命題,求實數(shù)a的取值范圍.

2)當(dāng)命題“若p,則q”為真命題,“若q,則p”為假命題時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列中,

1)求數(shù)列的通項;

2)滿足的共有幾項?

查看答案和解析>>

同步練習(xí)冊答案