【題目】如圖1,一藝術(shù)拱門(mén)由兩部分組成,下部為矩形,的長(zhǎng)分別為,上部是圓心為的劣弧,

1)求圖1中拱門(mén)最高點(diǎn)到地面的距離;

2)現(xiàn)欲以B點(diǎn)為支點(diǎn)將拱門(mén)放倒,放倒過(guò)程中矩形所在的平面始終與地面垂直,如圖2、圖3、圖4所示.設(shè)與地面水平線所成的角為.記拱門(mén)上的點(diǎn)到地面的最大距離為,試用的函數(shù)表示,并求出的最大值.

【答案】(1)拱門(mén)最高點(diǎn)到地面的距離為.(2),其最大值為

【解析】

(1)求出圓的半徑,結(jié)合圓和RT的性質(zhì)求出拱門(mén)最高點(diǎn)到地面的距離即可;

(2)通過(guò)討論P點(diǎn)所在的位置以及三角函數(shù)的性質(zhì)求出h的最大值即可.

1)如圖,過(guò)作與地面垂直的直線交于點(diǎn),交劣弧于點(diǎn),

長(zhǎng)即為拱門(mén)最高點(diǎn)到地面的距離.

中,,

所以,圓的半徑

所以

答:拱門(mén)最高點(diǎn)到地面的距離為

2)在拱門(mén)放倒過(guò)程中,過(guò)點(diǎn)作與地面垂直的直線與“拱門(mén)外框上沿”相交于點(diǎn)

當(dāng)點(diǎn)在劣弧上時(shí),拱門(mén)上的點(diǎn)到地面的最大距離等于圓的半徑長(zhǎng)與圓心到地面距離之和;

當(dāng)點(diǎn)在線段上時(shí),拱門(mén)上的點(diǎn)到地面的最大距離等于點(diǎn)到地面的距離.

由(1)知,在中,

為坐標(biāo)原點(diǎn),直線軸,建立如圖所示的坐標(biāo)系.

當(dāng)點(diǎn)在劣弧上時(shí),

,,

由三角函數(shù)定義,

,

所以當(dāng)時(shí),

取得最大值

當(dāng)點(diǎn)在線段上時(shí),.設(shè),在中,

,得

所以

又當(dāng)時(shí),

所以上遞增.

所以當(dāng)時(shí),取得最大值

因?yàn)?/span>,所以的最大值為

綜上,藝術(shù)拱門(mén)在放倒的過(guò)程中,拱門(mén)上的點(diǎn)到地面距離的最大值為(

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年6月份上合峰會(huì)在青島召開(kāi),面向高校招募志愿者,中國(guó)海洋大學(xué)海洋環(huán)境學(xué)院的8名同學(xué)符合招募條件并審核通過(guò),其中大一、大二、大三、大四每個(gè)年級(jí)各2名.若將這8名同學(xué)分成甲乙兩個(gè)小組,每組4名同學(xué),其中大一的兩名同學(xué)必須分到同一組,則分到乙組的4名同學(xué)中恰有2名同學(xué)是來(lái)自于同一年級(jí)的分組方式共有__________種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角所對(duì)的邊分別為,且

(1)求的值;

(2)若,求的面積的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)函數(shù),如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)、、都在的定義域內(nèi),就有、、也是某個(gè)三角形的三邊長(zhǎng),則稱保三角形函數(shù)”.

(1)若是定義在上的周期函數(shù),且值域?yàn)?/span>,證明:不是保三角形函數(shù);

(2)若是保三角形函數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將寬和長(zhǎng)都分別為x,的兩個(gè)矩形部分重疊放在一起后形成的正十字形面積為注:正十字形指的是原來(lái)的兩個(gè)矩形的頂點(diǎn)都在同一個(gè)圓上,且兩矩形長(zhǎng)所在的直線互相垂直的圖形,

y關(guān)于x的函數(shù)解析式;

當(dāng)x,y取何值時(shí),該正十字形的外接圓面積最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由數(shù)字1,2,3,4,5,6組成沒(méi)有重復(fù)數(shù)字的三位數(shù),偶數(shù)共有______個(gè),其中個(gè)位數(shù)字比十位數(shù)字大的偶數(shù)共有______個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司新上一條生產(chǎn)線,為保證新的生產(chǎn)線正常工作,需對(duì)該生產(chǎn)線進(jìn)行檢測(cè),現(xiàn)從該生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測(cè)量產(chǎn)品數(shù)據(jù),用統(tǒng)計(jì)方法得到樣本的平均數(shù),標(biāo)準(zhǔn)差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估值.

1)從該生產(chǎn)線加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為X,依據(jù)以下不等式評(píng)判(P表示對(duì)應(yīng)事件的概率)

評(píng)判規(guī)則為:若至少滿足以上兩個(gè)不等式,則生產(chǎn)狀況為優(yōu),無(wú)需檢修;否則需檢修生產(chǎn)線,試判斷該生產(chǎn)線是否需要檢修;

2)將數(shù)據(jù)不在內(nèi)的產(chǎn)品視為次品,從該生產(chǎn)線加工的產(chǎn)品中任意抽取2件,次品數(shù)記為Y,求Y的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的右頂點(diǎn),離心率為,為坐標(biāo)原點(diǎn).

)求橢圓的方程;

)已知(異于點(diǎn))為橢圓上一個(gè)動(dòng)點(diǎn),過(guò)作線段的垂線交橢圓于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)計(jì)劃發(fā)射火星探測(cè)器,該探測(cè)器的運(yùn)行軌道是以火星(其半徑)的中心為一個(gè)焦點(diǎn)的橢圓.如圖,已知探測(cè)器的近火星點(diǎn)(軌道上離火星表面最近的點(diǎn))到火星表面的距離為,遠(yuǎn)火星點(diǎn)(軌道上離火星表面最遠(yuǎn)的點(diǎn))到火星表面的距離為.假定探測(cè)器由近火星點(diǎn)第一次逆時(shí)針運(yùn)行到與軌道中心的距離為時(shí)進(jìn)行變軌,其中分別為橢圓的長(zhǎng)半軸、短半軸的長(zhǎng),求此時(shí)探測(cè)器與火星表面的距離(精確到).

查看答案和解析>>

同步練習(xí)冊(cè)答案