已知橢圓的兩焦點F1、F2,點P在橢圓上,且PF1⊥PF2,已知|PF1|=3,|F1F2|=5,試建立適當?shù)淖鴺讼登蟪鰴E圓的標準方程.
考點:橢圓的標準方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:以F1F2所在直線為x軸,F(xiàn)1F2垂直平分線為y軸,建立坐標系,求出a,b,即可得出橢圓的方程.
解答: 解:以F1F2所在直線為x軸,F(xiàn)1F2垂直平分線為y軸,建立坐標系,則c=2.5,
∵PF1⊥PF2,|PF1|=3,|F1F2|=5,
∴|PF2|=4,
∴2a=7,
∴a=3.5,
∴b=
6

∴橢圓的標準方程為
x2
12.25
+
y2
6
=1
點評:本題考查橢圓的標準方程,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

計算:
lim
n→∞
(2-
1
n
+
2
n2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學動手做實驗:《用隨機模擬的方法估計圓周率的值》,在如圖的正方形中隨機撒豆子,每個豆子落在正方形內(nèi)任何一點是等可能的,若他隨機地撒50粒統(tǒng)計得到落在圓內(nèi)的豆子數(shù)為39粒,則由此估計出的圓周率π的值為
 
.(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C成等差數(shù)列,a、b、c分別為角A、B、C的對邊,sinAsinC=cos2B,S△ABC=4
3
,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<x<
1
2
,求函數(shù)f(x)=2x(1-2x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2lnx-a(x-
1
x
)(a≠0)有兩個不同的極值點x1,x2(x1<x2).
(Ⅰ)求a的取值范圍;
(Ⅱ)設
1
e
x1
<1,求f(x)極小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),
c
=(1,-1),其中x∈[-
π
2
,
π
2
].
(1)求證:(
a
+
b
)⊥(
a
-
b
);
(2)設函數(shù)f(x)=(|
a
+
c
|2-3)(|
b
+
c
|2-3),求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某商場經(jīng)銷一批進貨單價為40元的商品,銷售單價與日均銷售量的關系如下表:
銷售單價/元50515253545556
日均銷售量/個48454239363330
為了獲取最大利潤,售價定為多少時較為合理?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cosx(sinx-
3
cosx).
(1)求f(x)的最小正周期;
(2)若對任意x∈[0,
π
2
],使得[f(x)+
3
]+2m=0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案