19.一個幾何體的三視圖如圖所示,則其體積為( 。
A.π+2B.2π+4C.π+4D.2π+2

分析 由三視圖可得,直觀圖是直三棱柱與半圓柱的組合體,由圖中數(shù)據(jù),可得體積.

解答 解:由三視圖可得,直觀圖是直三棱柱與半圓柱的組合體,體積為$\frac{1}{2}×\sqrt{2}×\sqrt{2}×2$+$\frac{1}{2}•π•{1}^{2}•2$=π+2,
故選A.

點評 本題考查由三視圖求體積,考查學生的計算能力,確定直觀圖的形狀是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.某校對高二年級選學生物的學生的某次測試成績進行了統(tǒng)計,隨機抽取了m名學生的成績作為樣本,根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計表和頻率分布直方圖如下:
分組頻數(shù)頻率
[60,70)160.2
[70,80)50n
[80,90)10P
[90,100]40.05
合計MI
(I)求表中n,p的值和頻率分布直方圖中a的值;
(II)如果用分層抽樣的方法,從樣本成績在[60,70]和[90,100]的學生中共抽取5人,再從5人中選2人,求這2人成績在[60,70]的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某市公租房的房源位于A,B,C,D四個片區(qū),設每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的,在該市的甲、乙、丙三位申請人中:
(1)求恰有1人申請A片區(qū)房源的概率;
(2)用x表示選擇A片區(qū)的人數(shù),求x的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在一次比賽中某隊共有甲,乙,丙等5位選手參加,賽前用抽簽的方法決定出場的順序,則乙、丙都不與甲相鄰出場的概率是( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.某商場門口安裝了3個彩燈,它們閃亮的順序不固定,每個彩燈只能是紅、黃、綠中的一種顏色,且這3個彩燈閃亮的顏色各不相同,記這3個彩燈有序地閃亮一次為一個閃爍.在每個閃爍中,每秒鐘有且只有一個彩燈閃亮,且相鄰兩個閃爍的時間間隔均為3秒.如果要實現(xiàn)所有不同的閃爍,那么需要的時間至少是( 。
A.36秒B.33秒C.30秒D.15秒

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.我們可以利用數(shù)列{an}的遞推公式an=$\left\{\begin{array}{l}{n,n為奇數(shù)時}\\{\frac{{a}_{n}}{2},n為偶數(shù)時}\end{array}\right.$(n∈N+),求出這個數(shù)列各項的值,使得這個數(shù)列中的每一項都是奇數(shù),則a64+a65=66.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設等比數(shù)列{an}的前n項和為Sn,且滿足a6=8a3,則$\frac{S_6}{S_3}$=( 。
A.4B.5C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合M={x|x2-2x-3≤0},N={x|log2x>1},則M∩N=( 。
A.[-1,2)B.[-1,+∞)C.(2,3]D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)$f(x)=Asin(ωx+\frac{π}{4})(ω>0)$的圖象與x軸交點的橫坐標構(gòu)成一個公差為$\frac{π}{3}$的等差數(shù)列,要得到函數(shù)g(x)=Acosωx的圖象,只需將f(x)的圖象( 。
A.向左平移$\frac{π}{12}$個單位B.向右平移$\frac{π}{4}$個單位
C.向左平移$\frac{π}{4}$個單位D.向右平移$\frac{3π}{4}$個單位

查看答案和解析>>

同步練習冊答案