Processing math: 100%
11.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a6=8a3,則S6S3=( �。�
A.4B.5C.8D.9

分析 由a6=8a3,利用等比數(shù)列項(xiàng)公式q=2,由此能求出S6S3

解答 解:∵等比數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a6=8a3
a6a3=q3=8,解得q=2,
S6S3=1q61q3=1+q3=9.
故選:D.

點(diǎn)評(píng) 本題考查等差數(shù)列的前6項(xiàng)和與前3項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,橢圓C:x2a2+y2b2=1ab0的離心率為32,以橢圓C的上頂點(diǎn)T為圓心作圓T:x2+(y-1)2=r2(r>0),圓T與橢圓C在第一象限交于點(diǎn)A,在第二象限交于點(diǎn)B.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求TATB的最小值,并求出此時(shí)圓T的方程;
(Ⅲ)設(shè)點(diǎn)P是橢圓C上異于A,B的一點(diǎn),且直線PA,PB分別與Y軸交于點(diǎn)M,N,O為坐標(biāo)原點(diǎn),求證:|OM|•|ON|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)={x3xax2xa,若a=12,則函數(shù)g(x)=f(x)-1有1個(gè)零點(diǎn),若存在示數(shù)b,使函數(shù)h(x)=f(x)-b有兩個(gè)零點(diǎn),則a的取值范圍是a<0或a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.一個(gè)幾何體的三視圖如圖所示,則其體積為(  )
A.π+2B.2π+4C.π+4D.2π+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=lnx-3x,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是2x+y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在平面直角坐標(biāo)系xOy中,已知橢圓x2a2+y2b2=1ab0的上下頂點(diǎn)分別為A,B,右頂點(diǎn)為C,右焦點(diǎn)為F,延長(zhǎng)BF與AC交于點(diǎn)P,若O,F(xiàn),P,A四點(diǎn)共圓,則該橢圓的離心率為( �。�
A.212B.312C.512D.522

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=e2x,g(x)=kx+1(k∈R).
(Ⅰ)若直線y=g(x)和函數(shù)y=f(x)的圖象相切,求k的值;
(Ⅱ)當(dāng)k>0時(shí),若存在正實(shí)數(shù)m,使對(duì)任意x∈(0,m),都有|f(x)-g(x)|>2x恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=ex,g(x)=kx+1,且直線y=g(x)和函數(shù)y=f(x)的圖象相切.
(Ⅰ)求實(shí)數(shù)k的值;
(Ⅱ)設(shè)h(x)=f(x)-g(x),若不等式(m-x)h′(x)<x+1對(duì)任意x∈(0,+∞)恒成立(m∈Z,h′(x)為h(x)的導(dǎo)函數(shù)),求m的最大值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知a>0,x,y滿足約束條件{x1x+y2axy2a0,z=x+2y的最小值為-2,則a=(  )
A.12B.32C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案