【題目】在國慶周年慶典活動中,東城區(qū)教育系統(tǒng)近名師生參與了國慶中心區(qū)合唱、方陣群眾游行、聯(lián)歡晚會及萬只氣球保障等多項重點任務.設是參與國慶中心區(qū)合唱的學校是參與27方陣群眾游行的學校,是參與國慶聯(lián)歡晚會的學校.請用上述集合之間的運算來表示:①既參與國慶中心區(qū)合唱又參與27方陣群眾游行的學校的集合為_____;②至少參與國慶中心區(qū)合唱與國慶聯(lián)歡晚會中一項的學校的集合為_____

【答案】

【解析】

①利用交集定義直接求解,②利用并集定義直接求解.

解:①設是參與國慶中心區(qū)合唱的學校,

是參與27方陣群眾游行的學校,

是參與國慶聯(lián)歡晚會的學校

既參與國慶中心區(qū)合唱又參與方陣群眾游行的學校的集合為

故答案為:

②至少參與國慶中心區(qū)合唱與國慶聯(lián)歡晚會中一項的學校的集合為

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點與拋物線的焦點重合,且橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設是橢圓的右頂點,過點作兩條直線分別與橢圓交于另一點,若直線的斜率之積為,求證:直線恒過一個定點,并求出這個定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解本屆高二學生對文理科的選擇與性別是否有關,現(xiàn)隨機從高二的全體學生中抽取了若干名學生,據(jù)統(tǒng)計,男生35人,理科生40人,理科男生30人,文科女生15人。

(1)完成如下2×2列聯(lián)表,判斷是否有99.9%的把握認為本屆高二學生“對文理科的選擇與性別有關”?

男生

女生

合計

文科

理科

合計

(2)已采用分層抽樣的方式從樣本的所有女生中抽取了5人,現(xiàn)從這5人中隨機抽取2人參加座談會,求抽到的2人恰好一文一理的概率。

0.15

0.10

0.05

0.01

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

(參考公式,其中為樣本容量)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為菱形,,,點的中點.

(1)證明:;

(2)若點為線段的中點,平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品銷售價格和銷售量與銷售天數(shù)有關,第x的銷售價格(元/百斤),第x的銷售量(百斤)(a為常數(shù)),且第7天銷售該商品的銷售收入為2009元.

1)求第10天銷售該商品的銷售收入是多少?

2)這20天中,哪一天的銷售收入最大?為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標方程;

(2)設圓與直線交于點,若點的坐標為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)處有極大值,則常數(shù)為( )

A. 2或6 B. 2 C. 6 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求證:上是單調(diào)遞減函數(shù);

2)若函數(shù)有兩個正零點、,求的取值范圍,并證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球為白球的概率是多少?

2)摸出的3個球為2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

同步練習冊答案