【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機(jī)摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球?yàn)榘浊虻母怕适嵌嗌伲?

2)摸出的3個球?yàn)?/span>2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計(jì))能賺多少錢?

【答案】1005204531200

【解析】試題分析:()先列舉出所有的事件共有20種結(jié)果,摸出的3個球?yàn)榘浊蛑挥幸环N結(jié)果,根據(jù)概率公式得到要求的概率,本題應(yīng)用列舉來解,是一個好方法;()先列舉出所有的事件共有20種結(jié)果,摸出的3個球?yàn)?/span>1個黃球2個白球從前面可以看出共有9種結(jié)果種結(jié)果,根據(jù)概率公式得到要求的概率;()先列舉出所有的事件共有20種結(jié)果,根據(jù)摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢,算一下摸出的球是同一色球的概率,估計(jì)出結(jié)果

試題解析:把3只黃色乒乓球標(biāo)記為A、B、C,3只白色的乒乓球標(biāo)記為1、23

6個球中隨機(jī)摸出3個的基本事件為:ABC、AB1、AB2、AB3AC1、AC2AC3、A12A13、A23、BC1BC2、BC3B12、B13、B23、C12C13、C23、123,共20

1.事件E={摸出的3個球?yàn)榘浊?/span>},事件E包含的基本事件有1個,即摸出1233個球,PE=1/20=005

2.事件F={摸出的3個球?yàn)?/span>2個黃球1個白球},事件F包含的基本事件有9個,PF=9/20=045

3.事件G={摸出的3個球?yàn)橥活伾?/span>}={摸出的3個球?yàn)榘浊蚧蛎龅?/span>3個球?yàn)辄S球},PG=2/20=01,假定一天中有100人次摸獎,由摸出的3個球?yàn)橥活伾母怕士晒烙?jì)事件G發(fā)生有10次,不發(fā)生90次.則一天可賺,每月可賺1200元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且滿足+n=2(n∈)

(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

(2)數(shù)列滿足(n∈),其前n項(xiàng)和為,試求滿足+>2018的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的最小正周期和遞減區(qū)間;

(2)當(dāng)時,求的最大值和最小值,以及取得最值時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求求值:
(1)用輾轉(zhuǎn)相除法求123和48的最大公約數(shù).
(2)用更相減損術(shù)求80和36的最大公約數(shù).
(3)把89化為二進(jìn)制數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】F1、F2為橢圓的兩個焦點(diǎn),以F2為圓心作圓F2 , 已知圓F2經(jīng)過橢圓的中心,且與橢圓相交于M點(diǎn),若直線MF1恰與圓F2相切,則該橢圓的離心率e為( 。
A. ﹣1
B.2﹣
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),一個焦點(diǎn)F(﹣2,0),且長軸長與短軸長的比是
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(m,0)在橢圓C的長軸上,點(diǎn)P是橢圓上任意一點(diǎn).當(dāng) 最小時,點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和支出的維修費(fèi)用y(萬元),有如下表的統(tǒng)計(jì)資料:

使用年限x

2

3

4

5

6

維修費(fèi)用y

2.2

3.8

5.5

6.5

7.0

若由資料知yx呈線性相關(guān)關(guān)系,試求:
(1)線性回歸方程 .
(2)估計(jì)使用年限為10年時,維修費(fèi)用是多少.
(3)計(jì)算總偏差平方和、殘差平方和及回歸平方和.
(4)求 并說明模型的擬合效果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1= ,an+1= (n∈N*).
(Ⅰ)求證:數(shù)列{ }是等差數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn+an=l(n∈N*),Sn=b1b2+b2b3+…+bnbn+1 , 試比較an與8Sn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計(jì)這次環(huán)保知識競賽的及格率(60分及以上為及格).

查看答案和解析>>

同步練習(xí)冊答案