(本小題滿分14分)
已知三次函數(shù)圖象上點(1,8)處的切線經(jīng)過點(3,0),并且在x=3處有極值.
(Ⅰ)求的解析式;
(Ⅱ)若當(dāng)x∈(0,m)時,>0恒成立,求實數(shù)m的取值范圍.
解:(1)∵f(x)圖象過點(1,8),∴a−5+c+d=8,即a+c+d=13 ① (2分)
又f/(x)=3ax2−10x+c,且點(1,8)處的切線經(jīng)過(3,0),
∴f/(1)== −4,即3a−10+c= −4,∴3a+c=6 ② (4分)
又∵f(x)在x=3 處有極值,∴f /(3)=0,即27a+c=30 ③ (5分)
聯(lián)立①、②、③解得a=1,c=3,d=9, f(x)= x3−5x2+3x+9 (7分)
(2)f /(x)=3x2−10x+3=(3x−1)(x−3) 由f /(x)=0得x1=,x2=3 (8分)
當(dāng)x∈(0,)時,f /(x)>0,f(x)單調(diào)遞增,∴f(x)>f(0)=9
當(dāng)x∈(,3)時,f /(x)<0,f(x)單調(diào)遞減,∴f(x)>f(3)=0. (11分)
又∵f(3)=0,∴當(dāng)m>3時,f(x)>0在(0,m)內(nèi)不恒成立.
∴當(dāng)且僅當(dāng)m∈(0,3]時,f(x)>0在(0,m)內(nèi)恒成立.
所以m取值范圍為(0,3] . (14分)
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com