一個袋子中裝有6個紅球和4個白球,假設(shè)每一個球被摸到的可能性是相等的.
(Ⅰ)從袋子中摸出3個球,求摸出的球為2個紅球和1個白球的概率;
(Ⅱ)從袋子中摸出兩個球,其中白球的個數(shù)為,求的分布列和數(shù)學期望.
(Ⅰ);(Ⅱ)見解析.

試題分析:(Ⅰ)先求出從袋中摸3個球的總事件數(shù),再求出摸到的球是2個紅球1個白球的事件數(shù),做比值即可;(Ⅱ)先求出取相應值時對應的概率,再列出分布列求期望.
試題解析:解:(Ⅰ)從裝有10個球的袋子中摸出3個球的事件總數(shù)為,
其中摸出的三個球有2個紅球1個白球的事件總數(shù)為,
所以所求的概率為;              4分
(Ⅱ)從10個球的袋子里摸出2個球的事件總數(shù)為
2個球都不是白球的概率為,
1個白球1個紅球的概率為
2個都是白球的概率為,              8分
所以的分布列為:








                                                                        10分
所以的數(shù)學期望為              14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

現(xiàn)有甲、乙、丙三人參加某電視臺的應聘節(jié)目《非你莫屬》,若甲應聘成功的概率為,乙、丙應聘成功的概率均為,(0<t<2),且三個人是否應聘成功是相互獨立的.
(1)若乙、丙有且只有一個人應聘成功的概率等于甲應聘成功的概率,求t的值;
(2)記應聘成功的人數(shù)為,若當且僅當為=2時概率最大,求E()的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)為迎接2014年“馬”年的到來,某校舉辦猜獎活動,參與者需先后回答兩道選擇題,問題有三個選項,問題有四個選項,但都只有一個選項是正確的,正確回答問題可獲獎金元,正確回答問題可獲獎金元,活動規(guī)定:參與者可任意選擇回答問題的順序,如果第一個問題回答正確,則繼續(xù)答題,否則該參與者猜獎活動終止,假設(shè)一個參與者在回答問題前,對這兩個問題都很陌生.
(1)如果參與者先回答問題,求其恰好獲得獎金元的概率;
(2)試確定哪種回答問題的順序能使該參與者獲獎金額的期望值較大.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某食品企業(yè)一個月內(nèi)被消費者投訴的次數(shù)用表示,椐統(tǒng)計,隨機變量的概率分布如下:

0
1
2
3
p
0.1
0.3
2a
a
(1)求a的值和的數(shù)學期望;
(2)假設(shè)一月份與二月份被消費者投訴的次數(shù)互不影響,求該企業(yè)在這兩個月內(nèi)共被消費者投訴2次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為了解甲、乙兩廠產(chǎn)品的質(zhì)量,從兩廠生產(chǎn)的產(chǎn)品中分別隨機抽取各10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克).如圖是測量數(shù)據(jù)的莖葉圖:

規(guī)定:當產(chǎn)品中的此種元素含量不小于18毫克時,該產(chǎn)品為優(yōu)等品.
(1)試用上述樣本數(shù)據(jù)估計甲、乙兩廠生產(chǎn)的優(yōu)等品率;
(2)從乙廠抽出的上述10件樣品中,隨機抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)的分布列及其數(shù)學期望;
(3)從甲廠的10件樣品中有放回的隨機抽取3件,也從乙廠的10件樣品中有放回的隨機抽取3件,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖是在豎直平面內(nèi)的一個“通道游戲”.圖中豎直線段和斜線段都表示通道,并且在交點處相遇,若豎直線段有一條的為第一層,有二條的為第二層, ,依次類推.現(xiàn)有一顆小彈子從第一層的通道里向下運動,若在通道的分叉處,小彈子以相同的概率落入每個通道.記小彈子落入第層第個豎直通道(從左至右)的概率為,某研究性學習小組經(jīng)探究發(fā)現(xiàn)小彈子落入第層的第個通道的次數(shù)服從二項分布,請你解決下列問題.

(Ⅰ)試求的值,并猜想的表達式;(不必證明)
(Ⅱ)設(shè)小彈子落入第6層第個豎直通道得到分數(shù)為,其中,試求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若隨機變量X的分布列如表:則E(X)=(  )
X
0
1
2
3
4
5
P
2x
3x
7x
2x
3x
x
(A)      (B)      (C)      (D)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

籃球運動員在比賽中每次罰球命中得1分,罰不中得0分,已知某運動員罰球命中的概率為0.7,則他罰球2次(每次罰球結(jié)果互不影響)的得分的數(shù)學期望是       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本大題9分)袋中有2個紅球,n個白球,各球除顏色外均相同.已知從袋中摸出2個球均為白球的概率為,(Ⅰ)求n;(Ⅱ)從袋中不放回的依次摸出三個球,記ξ為相鄰兩次摸出的球不同色的次數(shù)(例如:若取出的球依次為紅球、白球、白球,則ξ=1),求隨機變量ξ的分布列及其數(shù)學期望Eξ.

查看答案和解析>>

同步練習冊答案