籃球運動員在比賽中每次罰球命中得1分,罰不中得0分,已知某運動員罰球命中的概率為0.7,則他罰球2次(每次罰球結(jié)果互不影響)的得分的數(shù)學期望是       
1.4

試題分析:運動員甲罰球1次的得分為X,X的取值可能為0,1,2,然后分別求出相應(yīng)的概率,根據(jù)數(shù)學期望公式解之即可.解:運動員甲罰球2次的得分為X,X的取值可能為0,1,2. P(X=0)=(1-0.7)(1-0.7)=0.09, P(X=1)= ×0.7×(1-0.7)=0.42, P(X=2)=0.7×0.7=0.49, E(X)=0×0.09+1×0.42+2×0.49=1.4.故答案為:1.4
點評:本題主要考查了二項分布與n次獨立重復(fù)試驗的模型,同時考查了離散型隨機變量的數(shù)學期望,屬于容易題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

一個袋子中裝有6個紅球和4個白球,假設(shè)每一個球被摸到的可能性是相等的.
(Ⅰ)從袋子中摸出3個球,求摸出的球為2個紅球和1個白球的概率;
(Ⅱ)從袋子中摸出兩個球,其中白球的個數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)某位收藏愛好者鑒定一件物品時,將正品錯誤地鑒定為贗品的概率為,將贗品錯誤地鑒定為正品的概率為,已知一批物品共有4件,其中正品3件,贗品1件.(1)求該收藏愛好者的鑒定結(jié)果為正品2件,贗品2件的概率;(2)求該收藏愛好者的鑒定結(jié)果中正品數(shù)的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)15000件產(chǎn)品中有1000件次品,從中抽取150件進行檢查,則查得次品數(shù)的數(shù)學期望為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙、丙三人進行羽毛球練習賽,其中兩人比賽,另一人當裁判,每局比賽結(jié)束時,負的一方在下一局當裁判,設(shè)各局中雙方獲勝的概率均為各局比賽的結(jié)果都相互獨立,第局甲當裁判.
(I)求第局甲當裁判的概率;
(II)求前局中乙恰好當次裁判概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為普及高中生安全逃生知識與安全防護能力,某學校高一年級舉辦了高中生安全知識與安全逃生能力競賽. 該競賽分為預(yù)賽和決賽兩個階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進行統(tǒng)計,制成如下頻率分布表.
分數(shù)(分數(shù)段)
頻數(shù)(人數(shù))
頻率
[60,70)


[70,80)


[80,90)


 [90,100)


合  計


(Ⅰ)求出上表中的的值;
(Ⅱ)按規(guī)定,預(yù)賽成績不低于分的選手參加決賽,參加決賽的選手按照抽簽方式?jīng)Q定出場順序.已知高一·二班有甲、乙兩名同學取得決賽資格.
①求決賽出場的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一·二班在決賽中進入前三名的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在某校高三學生的數(shù)學校本課程選課過程中,規(guī)定每位同學只能選一個科目。已知某班第一小組與第二小組各 有六位同學選擇科目甲或科 目乙,情況如下表:
 
科目甲
科目乙
總計
第一小組
1
5
6
第二小組
2
4
6
總計
3
9
12
現(xiàn)從第一小組、第二小 組中各任選2人分析選課情況.
(1)求選出的4 人均選科目乙的概率;
(2)設(shè)為選出的4個人中選科目甲的人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一廠家向用戶提供的一箱產(chǎn)品共10件,其中有1件次品. 用戶先對產(chǎn)品進行隨機抽檢以決定是否接受. 抽檢規(guī)則如下:至多抽檢3次,每次抽檢一件產(chǎn)品(抽檢后不放回),只要檢驗到次品就停止繼續(xù)抽檢,并拒收這箱產(chǎn)品;若3次都沒有檢驗到次品,則接受這箱產(chǎn)品,按上述規(guī)則,該用戶抽檢次數(shù)的數(shù)學期望是___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲班有2名男乒乓球選手和3名女乒乓球選手,乙班有3名男乒乓球選手和1名女乒乓球選手,學校計劃從甲乙兩班各選2名選手參加體育交流活動.
(Ⅰ)求選出的4名選手均為男選手的概率.
(Ⅱ)記為選出的4名選手中女選手的人數(shù),求的分布列和期望.

查看答案和解析>>

同步練習冊答案