【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且acos C+asin C-b-c=0.
(1)求A;
(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.
【答案】(1)A=60°;(2)
【解析】
(1)利用正弦定理,把邊化為角,結(jié)合輔助角公式可求;
(2)利用三角形內(nèi)角關(guān)系求出,結(jié)合正弦定理求出關(guān)系,利用余弦定理可求.
(1)acos C+asin C-b-c=0,由正弦定理得sin Acos C+sin Asin C=sin B+sin C,
即sin Acos C+sin Asin C=sin(A+C)+sin C,
又sin C≠0,所以化簡(jiǎn)得sin A-cos A=1,所以sin(A-30°)=.
在△ABC中,0°<A<180°,所以A-30°=30°,得A=60°.
(2)在△ABC中,因?yàn)閏os B=,所以sin B=.
所以sin C=sin(A+B)=×+×=.
由正弦定理得,.
設(shè)a=7x,c=5x(x>0),則在△ABD中,AD2=AB2+BD2-2AB·BDcos B,
即=25x2+×49x2-2×5x××7x×,解得x=1,所以a=7,c=5,
故S△ABC=acsin B=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右頂點(diǎn)分別為,,上下頂點(diǎn)分別為,,左、右焦點(diǎn)分別為,,離心率為e.
(1)若,設(shè)四邊形的面積為,四邊形的面積為,且,求橢圓C的方程;
(2)若,設(shè)直線與橢圓C相交于P,Q兩點(diǎn),分別為線段,的中點(diǎn),坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,且,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)命題與自然數(shù)n有關(guān),如果當(dāng)()時(shí)該命題成立,則可得時(shí)該命題也成立,若已知時(shí)命題不成立,則下列說(shuō)法正確的是______(填序號(hào))
(1)時(shí),該命題不成立;
(2)時(shí),該命題不成立;
(3)時(shí),該命題可能成立;
(4)時(shí),該命題可能成立也可能不成立,但若時(shí)命題成立,則對(duì)任意,該命題都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中真命題是
A. 同垂直于一直線的兩條直線互相平行
B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱
C. 過(guò)空間任一點(diǎn)與兩條異面直線都垂直的直線有且只有一條
D. 過(guò)球面上任意兩點(diǎn)的大圓有且只有一個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓 的離心率為,且過(guò)點(diǎn).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè)點(diǎn),是橢圓上異于頂點(diǎn)的任意兩點(diǎn),直線,的斜率分別為,且.
①求的值;
②設(shè)點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,試求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,若以,為焦點(diǎn)的雙曲線的漸近線經(jīng)過(guò)點(diǎn),則該雙曲線的離心率為
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系 xOy 中,已知橢圓 C:=1(a>b>0)的離心率為,且過(guò)點(diǎn),點(diǎn)P在第四象限, A為左頂點(diǎn), B為上頂點(diǎn), PA交y軸于點(diǎn)C,PB交x軸于點(diǎn)D.
(1) 求橢圓 C 的標(biāo)準(zhǔn)方程;
(2) 求 △PCD 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知橢圓: 上動(dòng)點(diǎn)PQ,O為原點(diǎn);
(1)若,求證:為定值;
(2)點(diǎn),若,求證:直線過(guò)定點(diǎn);
(3)若,求證:直線為定圓的切線;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)為,寬為的矩形紙片中,為邊的中點(diǎn),將沿直線翻轉(zhuǎn)(平面),若為線段的中點(diǎn),則在翻轉(zhuǎn)過(guò)程中,下列說(shuō)法錯(cuò)誤的是( )
A. 平面
B. 異面直線與所成角是定值
C. 三棱錐體積的最大值是
D. 一定存在某個(gè)位置,使
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com