【題目】在平面直角坐標(biāo)系 xOy 中,已知橢圓 C1(a>b>0)的離心率為,且過點(diǎn),點(diǎn)P在第四象限, A為左頂點(diǎn), B為上頂點(diǎn), PAy軸于點(diǎn)CPBx軸于點(diǎn)D.

(1) 求橢圓 C 的標(biāo)準(zhǔn)方程;

(2) PCD 面積的最大值.

【答案】(1)y21;(2)1

【解析】

1)由離心率,再把點(diǎn)坐標(biāo)代入1,結(jié)合可求得,得橢圓標(biāo)準(zhǔn)方程;

2)設(shè)直線方程為,可求得的坐標(biāo),由共線求得點(diǎn)坐標(biāo),這樣可求得,令換元后用基本不等式求得最大值.

(1) 由題意得:a24,b21

故橢圓C的標(biāo)準(zhǔn)方程為:y21.

(2) 由題意設(shè)lAPyk(x2),- <k<0,所以C(02k),

y(14k2)x216k2x16k240,所以xAxP

xA=-2xP,故yPk(xP2),

所以P,

設(shè)D(x0,0),因B(0,1)P,B,D三點(diǎn)共,所以kBDkPB,故,

解得x0,得D,

所以SPCDSPADSCAD×AD×|yPyC|

因為-<k<0,所以SPCD=-2

t12k,1<t<2,所以2k1t

所以g(t)=-2=-2

=-221,

當(dāng)且僅當(dāng)t時取等號,此時k,所以PCD面積的最大值為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓的極坐標(biāo)方程;

(2)設(shè)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,求三條曲線,,所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知矩形所在平面與半圓弧所在平面垂直,是半圓弧上異于的點(diǎn).

1)證明:平面平面;

2)若,當(dāng)三棱錐的體積最大且二面角的平面角的大小為時,試確定的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且acos C+asin C-b-c=0.

(1)求A;

(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為M是橢圓C的上頂點(diǎn),,F(xiàn)2是橢圓C的焦點(diǎn),的周長是6.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)過動點(diǎn)P(1,t)作直線交橢圓CA,B兩點(diǎn),且|PA|=|PB|,過P作直線l,使l與直線AB垂直,證明:直線l恒過定點(diǎn),并求此定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線Cy24x的焦點(diǎn)為F,過F的直線lC交于AB兩點(diǎn),點(diǎn)M的坐標(biāo)為(﹣1,0.

1)當(dāng)lx軸垂直時,求ABM的外接圓方程;

2)記AMF的面積為S1BMF的面積為S2,當(dāng)S14S2時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)Q是圓上的動點(diǎn),點(diǎn),若線段QN的垂直平分線MQ于點(diǎn)P.

(I)求動點(diǎn)P的軌跡E的方程

(II)若A是軌跡E的左頂點(diǎn),過點(diǎn)D(-3,8)的直線l與軌跡E交于B,C兩點(diǎn),求證:直線AB、AC的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)的圖像在點(diǎn)處的切線與直線平行,求實數(shù)的值;

(Ⅱ)討論函數(shù)的單調(diào)性;

(Ⅲ)若在函數(shù)定義域內(nèi),總有成立,試求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某公司生產(chǎn)線生產(chǎn)的某種產(chǎn)品中抽取件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo),由檢測結(jié)果得如圖所示的頻率分布直方圖:

(Ⅰ)求這件產(chǎn)品質(zhì)量指標(biāo)的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅱ)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.

(i)利用該正態(tài)分布,求;

(ii)已知每件該產(chǎn)品的生產(chǎn)成本為元,每件合格品(質(zhì)量指標(biāo)值)的定價為元;若為次品(質(zhì)量指標(biāo)值),除了全額退款外且每件次品還須賠付客戶元。若該公司賣出件這種產(chǎn)品,記表示這件產(chǎn)品的利潤,求.

附:.若,則 .

查看答案和解析>>

同步練習(xí)冊答案