已知全集U=R,集合M={x|
x-1
x+1
<0},N={x|x2-x<0},則集合M、N的關系用韋恩(Venn)圖可以表示為(  )
A、
B、
C、
D、
考點:Venn圖表達集合的關系及運算
專題:集合
分析:求出集合M,N,利用元素之間的關系即可得到結論.
解答: 解:M={x|
x-1
x+1
<0}={x|-1<x<1},N={x|x2-x<0}={x|0<x<1},
∴N?M?U,
故對應的關系為B.
故選:B.
點評:本題主要考查集合關系的判斷,利用元素之間的關系是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于集合A,如果定義了一種運算“⊕”,使得集合A中的元素間滿足下列4個條件:
(ⅰ)?a,b∈A,都有a⊕b∈A;
(ⅱ)?e∈A,使得對?a∈A,都有e⊕a=a⊕e=a;
(ⅲ)?a∈A,?a′∈A,使得a⊕a′=a′⊕a=e;
(ⅳ)?a,b,c∈A,都有(a⊕b)⊕c=a⊕(b⊕c),
則稱集合A對于運算“⊕”構成“對稱集”.
下面給出三個集合及相應的運算“⊕”:
①A={整數(shù)},運算“⊕”為普通加法;
②A={復數(shù)},運算“⊕”為普通減法;
③A={正實數(shù)},運算“⊕”為普通乘法.
其中可以構成“對稱集”的有
 
.(把所有正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為D,如果?x∈D,?y∈D,使得f(x)=-f(y)成立,則稱函數(shù)f(x)為“Ω函數(shù)”.給出下列四個函數(shù):
①y=sinx;
②y=2x;
③y=
1
x-1
;
④f(x)=lnx,
則其中“Ω函數(shù)”共有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一幾何體的三視圖如圖,該幾何體的頂點都在球O的球面上,球O的表面積是( 。
A、2πB、4πC、8πD、16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(tan80°-4cos10°)•
3-sin70°
2-cos210°
=( 。
A、
3
B、2
C、2
3
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)(x,y)滿足條件
x+2y≤4
2x+y≤4
x≥0
y≥0
,則z=
x2+(y+1)2
的最大值為( 。
A、
3
B、
65
3
C、
65
9
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的表面積是(  )
A、1cm2
B、3cm2
C、(2
3
+
15
)cm2
D、(
3
+
15
)cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從1,2,3,4,5,6這六個數(shù)中,每次取出兩個不同的數(shù)記為a,b,則共可得到2 
b
a
的不同值的個數(shù)是( 。
A、20B、22C、24D、28

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名.如圖是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖;將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表.
非體育迷 體育迷 合計
合計
(2)根據(jù)列聯(lián)表的獨立性檢驗,有多大的把握認為“體育迷”與性別有關?
(3)將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
參考公式:x2=
n(ad-bc)2
(a+b)(b+c)(a+c)(b+d)
(其中n=a+b+c+d)
x2≤2.706 x2>2.706 x2>3.841 x2>6.635
是否有關聯(lián) 沒有關聯(lián) 90% 95% 99%

查看答案和解析>>

同步練習冊答案