一次考試中,五名學生的數(shù)學、物理成績如下表
學生A1A2A3A4A5
數(shù)學8991939597
物理8789899293
(1)要在這五名學生中選2名參加一項活動,求選中的同學中至少有一人的物理成績高于90分的概率.
(2)請在所給的直角坐標系中畫出它們的散點圖,并求出這些數(shù)據(jù)的線性回歸直線方程.
參考公式回歸直線的方程是:y=bx+a,
其中對應的回歸估計值.b=b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
考點:線性回歸方程
專題:應用題,概率與統(tǒng)計
分析:(1)用列舉法可得從5名學生中任取2名學生的所有情況和其中至少有一人物理成績高于90(分)的情況包含的事件數(shù)目,由古典概型公式,計算可得答案.
(2)把所給的五組數(shù)據(jù)作為五個點的坐標描到直角坐標系中,得到散點圖;根據(jù)所給的數(shù)據(jù)先做出數(shù)據(jù)的平均數(shù),即樣本中心點,根據(jù)最小二乘法做出線性回歸方程的系數(shù),寫出線性回歸方程.
解答: 解:(1)從5名學生中任取2名學生的所有情況為:(A4,A5)、(A4,A1)、(A4,A2)、(A4,A3)、(A5,A1)、(A5,A2)、(A5,A3)、(A1,A2)、(A1,A3)、(A2,A3)共種情10況.
其中至少有一人物理成績高于90(分)的情況有:(A4,A5)、(A4,A1)、(A4,A2)、(A4,A3)、(A5,A1)、(A5,A2)、(A5,A3)共7種情況,
故上述抽取的5人中選2人,選中的學生的物理成績至少有一人的成績高于9(0分)的概率P=
7
10

(2)散點圖如圖所示.

可求得:
.
x
=
1
5
(89+91+93+95+97)=93,
.
y
=
1
5
(87+89+89+92+93)=90,
5
i=1
(xi-
.
x
)(yi-
.
y
)
=30,
5
i=1
(xi-
.
x
)2
=(-4)2+(-2)2+02+22+42=40,
∴b=0.75,a=20.25,
故y關于x的線性回歸方程是:
y
=0.75x+20.25
點評:本題主要考查了古典概型和線性回歸方程等知識,考查了學生的數(shù)據(jù)處理能力和應用意識.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,a1=1,a3=7.
(Ⅰ)求數(shù)列{an}的通項公式.
(Ⅱ)設bn=an•2 an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=f(x)的導函數(shù)的圖象與直線y=2x平行,且y=f(x)在x=-1處取得最小值為0.
(1)求y=f(x)的解析式;
(2)若函數(shù)y=f(x)-kx在區(qū)間(0,2)有兩個不同的零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=loga
x-1
x+1
(a>0,且a≠1)
(Ⅰ)求函數(shù)f(x)的定義域.
(Ⅱ)證明函數(shù)f(x)為奇函數(shù).
(Ⅲ)求使f(x)>f(-2)成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α∈(-
π
2
π
2
),β∈(0,π),求使等式sin(3π-α)=
2
cos(
π
2
-β),
3
cos(-α)=-
2
cos(π+β)同時成立的角α與β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關于x的不等式:(ax-2)(x-2a)>0(a∈R,a≠0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-ex(a>0).
(Ⅰ)若a=1,求函數(shù)f(x)在[m,m+l]上的最大值;
(Ⅱ)當1≤a≤e+1時,求證:f(x)≤x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,平面A1BC⊥側面A1ABB1,且AA1=AB=2.
(1)求證:AB⊥BC;
(2)若直線AC與平面A1BC所成的角為
π
6
,求銳二面角A-A1C-B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的方程-sin2x+sinx+a=0有實數(shù)解,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案