定義在R上的函數(shù)f(x)滿足f(x+2)=3f(x),當(dāng)x∈[0,2]時(shí),f(x)=4x2-12x,則當(dāng)x∈[-4,-2]時(shí),f(x)的最小值是( 。
A、-3B、9C、-9D、-1
考點(diǎn):函數(shù)恒成立問(wèn)題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x+2)=3f(x)得到f(x+4)與f(x)的關(guān)系,再設(shè)x∈[-4,-2],則有4+x∈[0,2],求得f(x+4)=(x+4)2-2(x+4)+2=x2+6x+16,從而得到f(x)=x2+6x+16=(x+3)2+求解.
解答: 解:由f(x+2)=3f(x),
得f(x+4)=3f(x+2)=9f(x),
即f(x)=
1
9
f(x+4),
設(shè)x∈[-4,-2],則4+x∈[0,2],
∵當(dāng)x∈[0,2]時(shí),f(x)=4x2-12x,
∴f(x+4)=4(x+4)2-12(x+4)=4x2+20x+16
∴f(x)=
1
9
f(x+4)=
1
9
(4x2+20x+16)=
4
9
(x+
5
2
2-1,
∴當(dāng)x=-
5
2
時(shí),f(x)取得最小值-1,
故選:D
點(diǎn)評(píng):本題主要考查用遞推關(guān)系來(lái)求函數(shù)的解析式和求二次函數(shù)最值問(wèn)題.根據(jù)條件求出f(x)的表達(dá)式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若2a+lna=3b+lnb,則a,b的大小關(guān)系正確的是( 。
A、a>bB、a≥b
C、a<bD、a≤b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各組向量中相互平行的是( 。
A、
a
=(-1,2),
b
=(3,5)
B、
a
=(1,2),
b
=(2,1)
C、
a
=(2,-1),
b
=(3,4)
D、
a
=(-2,1),
b
=(4,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2+4x+26y+b2=0與某坐標(biāo)軸相切,那么b可以取得值是( 。
A、±2或±13B、1和2
C、-1和-2D、-1和1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一位同學(xué)家開(kāi)了一個(gè)小賣部,他為了研究氣溫對(duì)熱飲銷售的影響,經(jīng)過(guò)統(tǒng)計(jì)得到了一天所賣的熱飲杯數(shù)(y)與當(dāng)天氣溫(x℃)之間的線性關(guān)系,其回歸方程為
y
=-2.35x+147.77.如果某天氣溫為2℃時(shí),則該小賣部大約能賣出熱飲的杯數(shù)是( 。
A、140B、143
C、152D、156

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、πB、2πC、4πD、8π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x-1+
x+1
的值域?yàn)椋ā 。?/div>
A、[-4,+∞)
B、[-
25
8
,+∞}
C、[-1,+∞)
D、[-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn),且橢圓C上的點(diǎn)A(1,
3
2
)到兩個(gè)焦點(diǎn)F1、F2的距離之和為4.
(1)求橢圓C的方程,并寫出其焦點(diǎn)F1、F2的坐標(biāo);
(2)過(guò)橢圓C的右焦點(diǎn)F2任作一條與兩坐標(biāo)軸都不垂直的弦AB,若點(diǎn)M在x軸上,且直線MA與直線MB關(guān)于x軸對(duì)稱,求點(diǎn)M的坐標(biāo);
(3)根據(jù)(2)中的結(jié)論特征,猜想出關(guān)于所有橢圓
x2
a2
+
y2
b2
=1(a>b>0)的一個(gè)一般結(jié)論(不需證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=
2
5
,且對(duì)任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(Ⅰ)求證:數(shù)列{
1
an
}為等差數(shù)列;
(Ⅱ)令bn=
2
3
1
an
+5),求數(shù)列{
bn
3n
}前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案