分析 先求出切線的斜率:y=(1-x)xn(n∈N*)在$x=\frac{1}{2}$處的導(dǎo)數(shù)值,再由點(diǎn)斜式寫出切線方程,令x=0求出bn
解答 解:∵曲線y=(1-x)xn(n∈N*),
∴y′=-xn+n(1-x)xn-1=xn-1(n-nx-x)
∴y′|${\;}_{x=\frac{1}{2}}$=($\frac{1}{2}$)n-1(n-$\frac{1}{2}$n-$\frac{1}{2}$)=(n-1)($\frac{1}{2}$)n,
∵當(dāng)x=$\frac{1}{2}$時(shí),y=($\frac{1}{2}$)n+1,
∴切線為l為y-($\frac{1}{2}$)n+1=(n-1)($\frac{1}{2}$)n(x-$\frac{1}{2}$),
當(dāng)x=0時(shí),直線l在y軸上上的截距為bn=(2-n)($\frac{1}{2}$)n+1,
故答案為:${b_n}=(2-n){(\frac{1}{2})^{n+1}}$.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
學(xué)生編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)分?jǐn)?shù)x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分?jǐn)?shù)y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化學(xué)分?jǐn)?shù)z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
優(yōu)秀 | 不優(yōu)秀 | 合計(jì) | |
數(shù)學(xué) | |||
物理 | |||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 當(dāng)n=10時(shí),該命題不成立 | B. | 當(dāng)n=10時(shí),該命題成立 | ||
C. | 當(dāng)n=8時(shí),該命題成立 | D. | 當(dāng)n=8時(shí),該命題不成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1} | B. | {2} | C. | {3,4} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等于2400 | B. | 等于2500 | C. | 等于4900 | D. | 與首項(xiàng)a1有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 恰有1件正品和恰有1件次品 | B. | 恰有1件次品和至少有1件次品 | ||
C. | 至少有1件次品和至少有1件正品 | D. | 全部是次品和至少有1件正品 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | E(η)=-5,D(η)=5 | B. | E(η)=-4,D(η)=-4 | C. | E(η)=-5,D(η)=-5 | D. | E(η)=-4,D(η)=5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com