17.圓x2+y2-4x=0在點P(4,1)處的切線方程為3x+4y-16=0或x=4.

分析 由題意可得:圓的圓心與半徑分別為:(2,0);2,再結(jié)合題意設(shè)直線,進而由點到直線的距離等于半徑即可得到答案.

解答 解:由圓的一般方程可得圓的圓心與半徑分別為:(2,0);2.
由圖象可得切線的斜率存在,設(shè)切線的斜率為k,則切線方程為:kx-y-4k+1=0,
由點到直線的距離公式可得:$\frac{|2k-4k+1|}{\sqrt{1+{k}^{2}}}=2$,
解得:k=-$\frac{3}{4}$,
所以切線方程為:3x+4y-16=0,
當(dāng)切線的斜率不存在時,切線為:x=4,滿足題意.
故答案為:3x+4y-16=0或x=4.

點評 本題主要考查由圓的一般方程求圓的圓心與半徑,以及點到直線的距離公式,此題屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下面幾種推理中是演繹推理的為(  )
A.科學(xué)家利用魚的沉浮原理制造潛艇
B.猜想數(shù)列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通項公式為an=$\frac{1}{n(n+1)}$(n∈N+
C.半徑為r的圓的面積S=πr2,則單位圓的面積S=π
D.由平面直角坐標(biāo)系中圓的方程為(x-a)2+(y-b)2=r2,推測空間直角坐標(biāo)系中球的方程為(x-a)2+(y-b)2+(z-c)2=r2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=$\frac{\sqrt{3}cosθ}{6}$x3+$\frac{sinθ}{4}$x2+$\frac{1}{tanθ}$,其中θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),則導(dǎo)數(shù)f′(1)的取值范圍是(  )
A.(-$\frac{1}{2}$,1]B.(-$\frac{1}{2}$,1)C.(-$\frac{1}{2}$,$\frac{1}{2}$)D.(-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.sin300°+tan600°的值是  ( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$+$\sqrt{3}$D.$\frac{1}{2}$+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{2}{cos^2}x+\frac{{\sqrt{3}}}{2}$sinxcosx+1.
(1)求函數(shù)f(x)的最小正周期和其圖象對稱中心的坐標(biāo);
(2)求函數(shù)f(x)在$[\frac{π}{12},\frac{π}{4}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果復(fù)數(shù)$\overline{z}=\frac{2}{-1+i}$,則( 。
A.|z|=2B.z的實部為1
C.z的虛部為-1D.z的共軛復(fù)數(shù)為-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知曲線y=(1-x)xn(n∈N*)在$x=\frac{1}{2}$處的切線為l,直線l在y軸上上的截距為bn,則數(shù)列{bn}的通項公式為bn=(2-n)($\frac{1}{2}$)n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中(圖),$A=\frac{π}{3},cosC=\frac{{2\sqrt{7}}}{7},BC=\sqrt{7}$,線段AC上點D滿足AD=2DC.
(Ⅰ)求sin∠ABC及邊AC的長;
(Ⅱ)求sin∠CBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2lnx-x2
(1)求f(x)的單調(diào)區(qū)間.
(2)求f(x)在區(qū)間$[\frac{1}{e},e]$的最值.

查看答案和解析>>

同步練習(xí)冊答案