.橢圓
>
>
與直線
交于
、
兩點(diǎn),且
,其
中
為坐標(biāo)原點(diǎn)。
1)求
的值;
2)若橢圓的離心率
滿足
,求橢圓長(zhǎng)軸的取值范圍。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
((本小題滿分13分)
已知橢圓
:
,
為其左、右焦點(diǎn),
為橢圓
上任一點(diǎn),
的重心為
,內(nèi)心
,且有
(其中
為實(shí)數(shù))
(1)求橢圓
的離心率
;
(2)過(guò)焦點(diǎn)
的直線
與橢圓
相交于點(diǎn)
、
,若
面積的最大值為3,求橢圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
((本小題滿分14分)
已知橢圓
的離心率為
,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)直線
與橢圓
交于
兩點(diǎn),且以
為直徑的圓過(guò)橢圓的右頂點(diǎn)
,
求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
((本小題滿分12分)
橢圓
的兩個(gè)焦點(diǎn)F
1、F
2,點(diǎn)P在橢圓C上,且PF
1⊥F
1F
2,且|PF
1|=
(I)求橢圓C的方程。
(II)以此橢圓的上頂點(diǎn)B為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形ABC,這樣的直角三角形是否存在?若存在,請(qǐng)說(shuō)明有幾個(gè);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分14分)
已知
,
為橢圓
的左、右頂點(diǎn),
為其右焦點(diǎn),
是橢圓
上異于
,
的動(dòng)點(diǎn),且
面積的最大值為
.
(Ⅰ)求橢圓
的方程及離心率;
(Ⅱ)直線
與橢圓在點(diǎn)
處的切線交于點(diǎn)
,當(dāng)直線
繞點(diǎn)
轉(zhuǎn)動(dòng)時(shí),試判斷以
為直徑的圓與直線
的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
的左、右焦點(diǎn)分別為
、
,離心率
,右準(zhǔn)線方程為
.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過(guò)點(diǎn)
的直線
與該橢圓交于
M、
N兩點(diǎn),且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
.已知橢圓C:
的離心率為
,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線
:
與橢圓C交于
,
兩點(diǎn),點(diǎn)
,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
如果橢圓
上一點(diǎn)
到焦點(diǎn)
的距離等于6,則點(diǎn)
到另一個(gè)焦點(diǎn)
的距離為_(kāi)___
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓
經(jīng)過(guò)點(diǎn)
,離心率為
,動(dòng)點(diǎn)
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求以O(shè)M為直徑且被直線
截得的弦長(zhǎng)為2的圓的方程;
(Ⅲ)設(shè)F是橢圓的右焦點(diǎn),過(guò)點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,證明線段ON的長(zhǎng)為定值,并求出這個(gè)定值.
查看答案和解析>>