((本小題滿分12分)
橢圓
的兩個焦點F
1、F
2,點P在橢圓C上,且PF
1⊥F
1F
2,且|PF
1|=
(I)求橢圓C的方程。
(II)以此橢圓的上頂點B為直角頂點作橢圓的內接等腰直角三角形ABC,這樣的直角三角形是否存在?若存在,請說明有幾個;若不存在,請說明理由。
解: (Ⅰ)
又
,
則
,
所求橢圓方程為
. …………………………………………6分
(Ⅱ)設能構成等腰直角三角形
,其中
(0,1),由題意可知,直角邊
,不可能垂直或平行于x軸,故可設
邊所在直線的方程為
(不妨設
),則
邊所在直線的方程為
,由
,得
A………………………………9分
用
代替上式中的
,得
,由
,得
,
解得:
或
,故存在三個內接等腰直角三角形.……12分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知中心在原點,焦點在x軸上的橢圓經(jīng)過點(
,
),且它的左焦點F
1將長軸分成2∶1,F(xiàn)
2是橢圓的右焦點.
(1)求橢圓的標準方程;
(2)設P是橢圓上不同于左右頂點的動點,延長F
1P至Q,使Q、F
2關于∠F
1PF
2的外角平分線l對稱,求F
2Q與l的交點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
為雙曲線
:
的右焦點,
為雙曲線
右支上一點,
且位于
軸上方,
為直線
上一點,
為坐標原點,已知
,
且
,則雙曲線
的離心率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
((本小題滿分12分)
已知橢圓的中心在坐標原點
,焦點在
軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,短軸長為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線
過
且與橢圓相交于A,B兩點,當P是AB的中點時,
求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
在直角坐標系
中,橢圓
的左、右焦點分別為
. 其中
也是拋物線
的焦點,點
為
與
在第一象限的交點,且
(Ⅰ)求
的方程;
(Ⅱ)若過點
的直線
與
交于不同的兩點
.
在
之間,試求
與
面積之比的取值范圍.(O為坐標原點)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
以橢圓短軸為直徑的圓經(jīng)過此橢圓的焦點,則橢圓的離心率是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知F
1、F
2分別是橢圓
的左、右焦點,曲線C是坐標原點為頂
點,
以F
2為焦點的拋物線,過點F
1的直線
交
曲線C于x軸上方兩個不同點P、Q,點P關于x軸的對稱點為M,設
(I)求
,求直線
的斜率k的取值范圍;
(II)求證:直線MQ過定點。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
((本小題滿分12分)
已知F
1、F
2分別是橢圓
的左、右焦點,曲線C是坐標原點為頂
點,
以F
2為焦點的拋物線,過點F
1的直線
交曲線C于x軸上方兩個不同點P、Q,點P關于x軸的對稱點為M,設
(I)求
,求直線
的斜率k的取值范圍;
(II)求證:直線MQ過定點。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
.橢圓
>
>
與直線
交于
、
兩點,且
,其
中
為坐標原點。
1)求
的值;
2)若橢圓的離心率
滿足
,求橢圓長軸的取值范圍。
查看答案和解析>>