已知,曲線上任意一點分別與點、連線的斜率的乘積為
(Ⅰ)求曲線的方程;
(Ⅱ)設直線軸、軸分別交于、兩點,若曲線與直線沒有公共點,求證:
(Ⅰ),
(Ⅱ)由,利用曲線與直線沒有公共點,,得到,利用,及均值定理確定

從而證得. 

試題分析:(Ⅰ)設曲線上任意一點的坐標為.利用依題意點分別與點、連線的斜率的乘積為,轉(zhuǎn)化成代數(shù)式,整理可得
(Ⅱ)由,利用曲線與直線沒有公共點,,得到,利用,,及均值定理確定

從而證得. 
試題解析:(Ⅰ)設曲線上任意一點的坐標為
依題意,且,     3分
整理得.所以,曲線的方程為:,.   5分
(Ⅱ)由,
,        7分
由已知條件可知,,所以
,
從而,   即.                 13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左焦點為,右焦點為

(Ⅰ)設直線過點且垂直于橢圓的長軸,動直線垂直于點P,線段的垂直平分線交于點M,求點M的軌跡的方程;
(Ⅱ)設為坐標原點,取曲線上不同于的點,以為直徑作圓與相交另外一點,求該圓的面積最小時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一條曲線軸右邊,上每一點到點的距離減去它到軸距離的差都等于1.
(1)求曲線C的方程;
(2)若過點M的直線與曲線C有兩個交點,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1、F2分別是雙曲線的左、右焦點,P為雙曲線右支上的任意一點且,則雙曲線離心率的取值范圍是(    )
A.(1,2]B.[2 +)C.(1,3]D.[3,+)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中心為, 一個焦點為的橢圓,截直線所得弦中點的橫坐標為,則該橢圓方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若拋物線上一點到焦點的距離為4,則點的橫坐標為      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的離心率為,是其左右頂點,是橢圓上位于軸兩側(cè)的點(點軸上方),且四邊形面積的最大值為4.

(1)求橢圓方程;
(2)設直線的斜率分別為,若,設△與△的面積分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的頂點到漸進線的距離等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知分別是雙曲線的兩個焦點,雙曲線和圓的一個交點為,且,那么雙曲線的離心率為 (     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案