中心為
, 一個焦點為
的橢圓,截直線
所得弦中點的橫坐標(biāo)為
,則該橢圓方程是( )
試題分析:
,設(shè)橢圓方程為:
,聯(lián)立方程得
,
,由韋達定理:
,所以橢圓方程為
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知動直線
與橢圓
相交于
、
兩點. ①若線段
中點的橫坐標(biāo)為
,求斜率
的值;②若點
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
經(jīng)過點
且與直線
相切的動圓的圓心軌跡為
.點
在軌跡
上,且關(guān)于
軸對稱,過線段
(兩端點除外)上的任意一點作直線
,使直線
與軌跡
在點
處的切線平行,設(shè)直線
與軌跡
交于點
.
(1)求軌跡
的方程;
(2)證明:
;
(3)若點
到直線
的距離等于
,且
的面積為20,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標(biāo)系中,已知定點A(-2,0)、B(2,0),異于A、B兩點的動點P滿足
,其中k
1、k
2分別表示直線AP、BP的斜率.
(Ⅰ)求動點P的軌跡E的方程;
(Ⅱ)若N是直線x=2上異于點B的任意一點,直線AN與(I)中軌跡E交予點Q,設(shè)直線QB與以NB為直徑的圓的一個交點為M(異于點B),點C(1,0),求證:|CM|·|CN| 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)橢圓
的左右頂點分別為
,離心率
.過該橢圓上任一點
作
軸,垂足為
,點
在
的延長線上,且
.
(1)求橢圓的方程;
(2)求動點
的軌跡
的方程;
(3)設(shè)直線
(
點不同于
)與直線
交于點
,
為線段
的中點,試判斷直線
與曲線
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
,曲線
上任意一點
分別與點
、
連線的斜率的乘積為
.
(Ⅰ)求曲線
的方程;
(Ⅱ)設(shè)直線
與
軸、
軸分別交于
、
兩點,若曲線
與直線
沒有公共點,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知動點
與定點
的距離和它到直線
的距離之比是常數(shù)
,記
的軌跡為曲線
.
(I)求曲線
的方程;
(II)設(shè)直線
與曲線
交于
兩點,點
關(guān)于
軸的對稱點為
,試問:當(dāng)
變化時,直線
與
軸是否交于一個定點?若是,請寫出定點的坐標(biāo),并證明你的結(jié)論;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
(5分)拋物線y
2=4x的焦點到雙曲線
的漸近線的距離是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知點
是雙曲線
的左焦點,過
且平行于雙曲線漸近線的直線與圓
交于點
,且點
在拋物線
上,則該雙曲線的離心率是( )
查看答案和解析>>