橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,該橢圓經(jīng)過(guò)點(diǎn)P且離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(A,B不是左,右頂點(diǎn)),且以AB為直徑的圓過(guò)橢圓C的右頂點(diǎn),求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
(1)解 設(shè)橢圓方程為+=1(a>b>0),
由e==,得a=2c,
∵a2=b2+c2,∴b2=3c2,
則橢圓方程變?yōu)?sub>+=1.
又橢圓過(guò)點(diǎn)P,將其代入求得c2=1,
故a2=4,b2=3,
即得橢圓的標(biāo)準(zhǔn)方程為+=1.
(2)證明 設(shè)A(x1,y1),B(x2,y2),
聯(lián)立
得(3+4k2)x2+8mkx+4(m2-3)=0,
①
又y1y2=(kx1+m)(kx2+m)
=k2x1x2+mk(x1+x2)+m2=.
∵橢圓的右頂點(diǎn)為A2(2,0),AA2⊥BA2,
∴(x1-2)(x2-2)+y1y2=0,
∴y1y2+x1x2-2(x1+x2)+4=0,
∴+++4=0,
∴7m2+16mk+4k2=0,
解得m1=-2k,m2=-,
由①,得3+4k2-m2>0,
當(dāng)m1=-2k時(shí),l的方程為y=k(x-2),
直線過(guò)定點(diǎn)(2,0),與已知矛盾.
當(dāng)m2=-時(shí),l的方程為y=k,
直線過(guò)定點(diǎn),
∴直線l過(guò)定點(diǎn),定點(diǎn)坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,雙曲線-=1(a,b>0)的兩頂點(diǎn)為A1,A2,虛軸兩端點(diǎn)為B1,B2,
兩焦點(diǎn)為F1,F2.若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,切點(diǎn)分別為A,B,C,D.則
(1)雙曲線的離心率e=________;
(2)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為P0,且
(1)求點(diǎn)M的軌跡C的方程;
(2)若直線l:y=x+1與(1)中的軌跡C交于A,B兩點(diǎn),求弦長(zhǎng)|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)AB是橢圓Γ的長(zhǎng)軸,點(diǎn)C在Γ上,且∠CBA=.若AB=4,BC=,則Γ的兩個(gè)焦點(diǎn)之間的距離為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系xOy中,已知橢圓C1:+=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線l同時(shí)與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
直線y=kx+2與拋物線y2=8x有且只有一個(gè)公共點(diǎn),則k的值為( ).
A.1 B.1或3 C.0 D.1或0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F且傾斜角為60°的直線l與拋物線分別交于A,B兩點(diǎn),則的值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)a,b,c,d∈(0,+∞),若a+d=b+c且|a-d|<|b-c|,則有( )
A.ad=bc B.ad<bc
C.ad>bc D.ad≤bc
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com