某水域一艘裝載濃硫酸的貨船發(fā)生側(cè)翻,導(dǎo)致濃硫酸泄漏,對河水造成了污染.為減
少對環(huán)境的影響,環(huán)保部門迅速反應(yīng),及時(shí)向污染河道投入固體堿,個(gè)單位的固體堿在水中
逐漸溶化,水中的堿濃度與時(shí)間(小時(shí))的關(guān)系可近似地表示為:
,只有當(dāng)污染河道水中堿的濃度不低于時(shí),才能對污
染產(chǎn)生有效的抑制作用.
(1)如果只投放1個(gè)單位的固體堿,則能夠維持有效的抑制作用的時(shí)間有多長?
(2)第一次投放1單位固體堿后,當(dāng)污染河道水中的堿濃度減少到時(shí),馬上再投放1個(gè)單
位的固體堿,設(shè)第二次投放后水中堿濃度為,求的函數(shù)式及水中堿濃度的最大值.
(此時(shí)水中堿濃度為兩次投放的濃度的累加)
(1)3 (2)第一次投放1單位固體堿能夠維持有效的抑制作用的時(shí)間為3小時(shí);
第一次投放小時(shí)后, 水中堿濃度的達(dá)到最大值為.
解析試題分析:.⑴由題意知或
解得或,即
能夠維持有效的抑制作用的時(shí)間:小時(shí).
⑵由⑴知,時(shí)第二次投入1單位固體堿,顯然的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/07/1/mexp73.png" style="vertical-align:middle;" />
當(dāng)時(shí),第一次投放1單位固體堿還有殘留,故
=+=;
當(dāng)時(shí),第一次投放1單位固體堿已無殘留,故
當(dāng)時(shí), =;
當(dāng)時(shí), ;
所以
當(dāng) 時(shí),
==;
當(dāng)且僅當(dāng)時(shí)取“=”,即
當(dāng)時(shí),第一次投放1單位固體堿已無殘留,
當(dāng)時(shí),,所以為增函數(shù);
當(dāng)時(shí),為減函數(shù);故=,
又,所以當(dāng)時(shí),水中堿濃度的
最大值為.
答:第一次投放1單位固體堿能夠維持有效的抑制作用的時(shí)間為3小時(shí);第一次投放
小時(shí)后, 水中堿濃度的達(dá)到最大值為.
考點(diǎn):函數(shù)模型的選擇與應(yīng)用.
點(diǎn)評:本題考查分段函數(shù),考查解不等式,考查函數(shù)的單調(diào)性,考查利用基本不等式求函數(shù)
的最值,確定函數(shù)的解析式是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
進(jìn)貨原價(jià)為80元的商品400個(gè),按90元一個(gè)售出時(shí),可全部賣出.已知這種商品每個(gè)漲價(jià)一元,其銷售數(shù)就減少20個(gè),問售價(jià)應(yīng)為多少時(shí)所獲得利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2+ (x≠0).
(1)判斷f(x)的奇偶性,并說明理由;
(2)若f(1)=2,試判斷f(x)在[2,+∞)上的單調(diào)性
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率P與日產(chǎn)量x(萬件)之間大體滿足關(guān)系:(其中c為小于6的正常數(shù)). (注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品),已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每生產(chǎn)出1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.
(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)f(x)有兩個(gè)零點(diǎn)0和-2,且f(x)最小值是-1,函數(shù)g(x)與f(x)的圖像關(guān)于原點(diǎn)對稱.
(1)求f(x)和g(x)的解析式;
(2)若h(x)=f(x)-λg(x)在區(qū)間[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有一批貨物需要用汽車從生產(chǎn)商所在城市甲運(yùn)至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時(shí)間互不影響。
據(jù)調(diào)查統(tǒng)計(jì),通過這兩條公路從城市甲到城市乙的200輛汽車所用時(shí)間的頻數(shù)分布如下表:
所用的時(shí)間(天數(shù)) | 10 | 11 | 12 | 13 |
通過公路1的頻數(shù) | 20 | 40 | 20 | 20 |
通過公路2的頻數(shù) | 10 | 40 | 40 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的定義域;
(2)若存在,對任意,總存在唯一,使得成立.求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差數(shù)列.
(1)求實(shí)數(shù)m的值;
(2)若a、b、c是兩兩不相等的正數(shù),且a、b、c成等比數(shù)列,試判斷f(a)+f(c)與2f(b)的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com