已知函數(shù)
(1)求函數(shù)的定義域;
(2)若存在,對(duì)任意,總存在唯一,使得成立.求實(shí)數(shù)的取值范圍.

(1)
(2)

解析試題分析:解:(1)由 解得 

(2)首先, 
     ∴函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/52/9/vhfyf2.png" style="vertical-align:middle;" />
其次,由題意知:,且對(duì)任意,總存在唯一,使得.以下分三種情況討論:
①當(dāng)時(shí),則,解得
②當(dāng)時(shí),則,解得;
③當(dāng)時(shí),則,解得;
綜上:
考點(diǎn):三角函數(shù)的性質(zhì)
點(diǎn)評(píng):主要是考查了三角函數(shù)的性質(zhì)和對(duì)數(shù)函數(shù)的不等式的求解,以及二次方程根的分布問(wèn)題,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6].
(1)當(dāng)a=-2時(shí),求f(x)的最值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-4,6]上是單調(diào)函數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某產(chǎn)品在一個(gè)生產(chǎn)周期內(nèi)的總產(chǎn)量為100t,平均分成若干批生產(chǎn)。設(shè)每批生產(chǎn)需要投入固定費(fèi)用75元,而每批生產(chǎn)直接消耗的費(fèi)用與產(chǎn)品數(shù)量x的平方成正比,已知每批生產(chǎn)10t時(shí),直接消耗的費(fèi)用為300元(不包括固定的費(fèi)用)。
(1)若每批產(chǎn)品數(shù)量為20t,求此產(chǎn)品在一個(gè)生產(chǎn)周期的總費(fèi)用(固定費(fèi)用和直接消耗的費(fèi)用)。
(2)設(shè)每批產(chǎn)品數(shù)量為xt,一個(gè)生產(chǎn)周期內(nèi)的總費(fèi)用y元,求y與x的函數(shù)關(guān)系式,并求
出y的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某水域一艘裝載濃硫酸的貨船發(fā)生側(cè)翻,導(dǎo)致濃硫酸泄漏,對(duì)河水造成了污染.為減
少對(duì)環(huán)境的影響,環(huán)保部門(mén)迅速反應(yīng),及時(shí)向污染河道投入固體堿,個(gè)單位的固體堿在水中
逐漸溶化,水中的堿濃度與時(shí)間(小時(shí))的關(guān)系可近似地表示為:
,只有當(dāng)污染河道水中堿的濃度不低于時(shí),才能對(duì)污
染產(chǎn)生有效的抑制作用.
(1)如果只投放1個(gè)單位的固體堿,則能夠維持有效的抑制作用的時(shí)間有多長(zhǎng)?
(2)第一次投放1單位固體堿后,當(dāng)污染河道水中的堿濃度減少到時(shí),馬上再投放1個(gè)單
位的固體堿,設(shè)第二次投放后水中堿濃度為,求的函數(shù)式及水中堿濃度的最大值.
(此時(shí)水中堿濃度為兩次投放的濃度的累加)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,,是某地一個(gè)湖泊的兩條互相垂直的湖堤,線(xiàn)段和曲線(xiàn)段分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過(guò)棧橋上某點(diǎn)分別修建與,平行的棧橋、,且以、為邊建一個(gè)跨越水面的三角形觀光平臺(tái).建立如圖2所示的直角坐標(biāo)系,測(cè)得線(xiàn)段的方程是,曲線(xiàn)段的方程是,設(shè)點(diǎn)的坐標(biāo)為,記.(題中所涉及的長(zhǎng)度單位均為米,棧橋和防波堤都不計(jì)寬度)

(1)求的取值范圍;
(2)試寫(xiě)出三角形觀光平臺(tái)面積關(guān)于的函數(shù)解析式,并求出該面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1;B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)和投資單位:萬(wàn)元).

(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到18萬(wàn)元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).
①若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤(rùn)?
②問(wèn):如果你是廠(chǎng)長(zhǎng),怎樣分配這18萬(wàn)元投資,才能使該企業(yè)獲得最大利潤(rùn)?其最大利潤(rùn)約為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)解方程:
(Ⅱ)設(shè),求函數(shù)在區(qū)間上的最大值的表達(dá)式;
(Ⅲ)若,,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在邊長(zhǎng)為60 cm的正方形鐵片的四角上切去相等的正方形,再把它沿虛線(xiàn)折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體箱子,箱底的邊長(zhǎng)是多少時(shí),箱子的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù) 的最大值為6.求最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案