已知f(x)=ax+ (a>1).
(1) 證明f(x)在(-1,+∞)上為增函數(shù);
(2) 用反證法證明方程f(x)=0沒有負(fù)數(shù)根.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長(zhǎng)為1,動(dòng)點(diǎn)M(2,t)(t>0)在直線x= (a為長(zhǎng)半軸,c為半焦距)上.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長(zhǎng)為2的圓的方程;
(3) 設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線段ON的長(zhǎng)為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN,那么kPM與kPN之積是與點(diǎn)P位置無關(guān)的定值.試對(duì)雙曲線=1寫出具有類似特性的性質(zhì),并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
數(shù)列{an}的前n項(xiàng)和記為Sn,已知a1=1,an+1=Sn(n=1,2,3,…),證明:
(1) 數(shù)列是等比數(shù)列;
(2) Sn+1=4an.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f0(x)=1-x2,f1(x)=,fn(x)=,(n≥1,n≥N),則方程f1(x)=有________個(gè)實(shí)數(shù)根,方程fn(x)=有________個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}滿足a1=1,且4an+1-anan+1+2an=9(n∈N).
(1) 求a2,a3,a4的值;
(2) 由(1) 猜想{an}的通項(xiàng)公式,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
下列函數(shù)中,在(0,)上有零點(diǎn)的函數(shù)是( )
A.f (x)=sin x-x B.f (x)=sin x-x
C.f (x)=sin2x-x D.f (x)=sin2x-x
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com