【題目】在直角坐標(biāo)系中,已知射線OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).過點P(1,0)作直線分別交射線OA,OB于點A,B.
(1)當(dāng)AB的中點在直線x﹣2y=0上時,求直線AB的方程;
(2)當(dāng)△AOB的面積取最小值時,求直線AB的方程.
(3)當(dāng)PAPB取最小值時,求直線AB的方程.
【答案】
(1)解:設(shè)A(a,a),B(b,﹣2b),則線段AB的中點為C .
∴ ﹣2× =0, = ,
分別化為:a=5b,a+2b﹣3ab=0.
解得: ,
∴直線AB的方程為:y﹣0= (x﹣1),化為:7x﹣4y﹣7=0
(2)解:設(shè)A(a,a),B(b,﹣2b),(a,b>0).
a=b=1時,A(1,1),B(1,﹣2),S△OAB= ×|OP|×|AB|= = .
a,b≠1時,S△OAB= ×|OP|×(a+2b)= (a+2b),
又 ,化為a+2b=3ab,
∴a+2b=3ab= ≤ ,解得:a+2b≥ .
∴S△OAB≥ × = ,
當(dāng)且僅當(dāng)a=2b= 時取等號.
綜上可得:當(dāng)△AOB的面積取最小值 時,直線AB的方程為:y= (x﹣1),化為:4x﹣y﹣4=0
(3)解:設(shè)直線AB的方程為:my=x﹣1. .
聯(lián)立 ,解得A ,可得|PA|= = .
聯(lián)立 ,解得B ,可得|PB|= = .
∴|PA||PB|= = = =f(m),
m=﹣3時,f(﹣3)=1;
令m+3=k≠0,f(m)=g(k)= = ,
k<0時,g(k)= ≥ = .
k>0時,g(k)= ≥ = ,
而 > ,
∴g(k)的最小值為: .
當(dāng)且僅當(dāng)k= 時取等號.
∴m= ﹣3.
∴直線AB的方程為:( ﹣3)y=x﹣1
【解析】(1)設(shè)A(a,a),B(b,﹣2b),則線段AB的中點為C .可得 ﹣2× =0, = ,聯(lián)立解出a,b,即可得出.(2)設(shè)A(a,a),B(b,﹣2b),(a,b>0).a(chǎn)=b=1時,A(1,1),B(1,﹣2),S△OAB= ×|OP|×|AB|.a(chǎn),b≠1時,S△OAB= ×|OP|×(a+2b)= (a+2b),又 ,化為a+2b=3ab,利用基本不等式的性質(zhì)可得a+2b的取值范圍.(3)設(shè)直線AB的方程為:my=x﹣1. .聯(lián)立 ,解得A ,可得|PA|= .同理可得|PB|= .可得|PA||PB.
進而得出最小值.|
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù))
以為極點, 軸為正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,若直線與曲線交于, 兩點。
(Ⅰ)若,求;
(Ⅱ)若點是曲線上不同于, 的動點,求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某互聯(lián)網(wǎng)理財平臺為增加平臺活躍度決定舉行邀請好友拿獎勵活動,規(guī)則是每邀請一位好友在該平臺注冊,并購買至少1萬元的12月定期,邀請人可獲得現(xiàn)金及紅包獎勵,現(xiàn)金獎勵為被邀請人理財金額的,且每邀請一位最高現(xiàn)金獎勵為300元,紅包獎勵為每邀請一位獎勵50元.假設(shè)甲邀請到乙、丙兩人,且乙、丙兩人同意在該平臺注冊,并進行理財,乙、丙兩人分別購買1萬元、2萬元、3萬元的12月定期的概率如下表:
理財金額 | 萬元 | 萬元 | 萬元 |
乙理財相應(yīng)金額的概率 | |||
丙理財相應(yīng)金額的概率 |
(1)求乙、丙理財金額之和不少于5萬元的概率;
(2)若甲獲得獎勵為元,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)已知a,b∈(0,+∞),求證:x,y∈R,有 ≥ ;
(2)若0<a<2,0<b<2,0<c<2,求證:(2﹣a)b,(2﹣b)c,(2﹣c)a不能同時大于1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過定點P(2,0)的直線l與曲線y= 相交于A,B兩點,O為坐標(biāo)原點,當(dāng)△AOB的面積取最大時,直線的傾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正確答案的序號是 . (寫出所有正確答案的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱為長方體,點是上的一點.
(1)若為的中點,當(dāng)為何值時,平面平面;
(2)若, ,當(dāng)時,直線與平面所成角的正弦值是否存在最大值?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項等差數(shù)列{an}的前n項和為Sn , 且滿足 ,S7=56. (Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)若數(shù)列{bn}滿足b1=a1且bn+1﹣bn=an+1 , 求數(shù)列 的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一艘船在航行過程中發(fā)現(xiàn)前方的河道上有一座圓拱橋.在正常水位時,拱橋最高點距水面8m,拱橋內(nèi)水面寬32m,船只在水面以上部分高6.5m,船頂部寬8m,故通行無阻,如圖所示.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求正常水位時圓弧所在的圓的方程;
(2)近日水位暴漲了2m,船已經(jīng)不能通過橋洞了.船員必須加重船載,降低船身在水面以上的高度,試問:船身至少降低多少米才能通過橋洞?(精確到0.1m, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com