【題目】某互聯(lián)網(wǎng)理財(cái)平臺為增加平臺活躍度決定舉行邀請好友拿獎勵(lì)活動,規(guī)則是每邀請一位好友在該平臺注冊,并購買至少1萬元的12月定期,邀請人可獲得現(xiàn)金及紅包獎勵(lì),現(xiàn)金獎勵(lì)為被邀請人理財(cái)金額的,且每邀請一位最高現(xiàn)金獎勵(lì)為300元,紅包獎勵(lì)為每邀請一位獎勵(lì)50元.假設(shè)甲邀請到乙、丙兩人,且乙、丙兩人同意在該平臺注冊,并進(jìn)行理財(cái),乙、丙兩人分別購買1萬元、2萬元、3萬元的12月定期的概率如下表:
理財(cái)金額 | 萬元 | 萬元 | 萬元 |
乙理財(cái)相應(yīng)金額的概率 | |||
丙理財(cái)相應(yīng)金額的概率 |
(1)求乙、丙理財(cái)金額之和不少于5萬元的概率;
(2)若甲獲得獎勵(lì)為元,求的分布列與數(shù)學(xué)期望.
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)互斥事件的概率公式以及獨(dú)立事件同時(shí)發(fā)生的概率公式,可以計(jì)算乙、丙理財(cái)金額之和不少于5萬元的概率值;(2)根據(jù)題意, 的所有可能取值 ,互斥事件的概率公式以及獨(dú)立事件同時(shí)發(fā)生的概率公式計(jì)算對應(yīng)的概率值,寫出隨機(jī)變量的分布列,計(jì)算數(shù)學(xué)期望值.
試題解析:(1)設(shè)乙、丙理財(cái)金額分別為ξ萬元、η萬元,則乙、丙理財(cái)金額之和不少于5萬元的概率為P(ξ+η≥5)=PP+PP+PP=×+×+×=.
(2)X的所有可能的取值為300,400,500,600,700.
P=PP=×=,
P=PP+P(ξ=2)P(η=1)=×+=.
P=PP+P(ξ=3)·P(η=1)+P P=×+×+×=,
P=PP+P(ξ=3)P(η=2)=×+×=,
P=P(ξ=3)P(η=3) =×=×=.
所以X的分布列為
X | 300 | 400 | 500 | 600 | 700 |
P |
E(X)=300×+400×+500×+600×+700×=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各自獨(dú)立地進(jìn)行射擊比賽,甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是 和 ,假設(shè)每次射擊是否擊中目標(biāo)相互之間沒有影響.
(1)求甲射擊3次,至少有1次未擊中目標(biāo)的概率;
(2)求兩人各射擊3次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)1次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a3=5,S15=225.?dāng)?shù)列{bn}是等比數(shù)列,b3=a2+a3 , b2b5=128(其中n=1,2,3,…). (Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)記cn=anbn , 求數(shù)列cn前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x),g(x)滿足:對于任意的x,都有f(﹣x)+f(x)=0,g(x)=g(|x|).當(dāng)x<0時(shí),f′(x)<0,g′(x)>0,則當(dāng)x>0時(shí),有( )
A.f'(x)>0,g′(x)>0
B.f′(x)<0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)>0,g′(x)<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(Ⅰ)求ω的值及函數(shù)f(x)的值域;
(Ⅱ)若x∈[0,1],求函數(shù)f(x)的值域;
(Ⅲ)若 ,且 ,求f(x0+1)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知射線OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).過點(diǎn)P(1,0)作直線分別交射線OA,OB于點(diǎn)A,B.
(1)當(dāng)AB的中點(diǎn)在直線x﹣2y=0上時(shí),求直線AB的方程;
(2)當(dāng)△AOB的面積取最小值時(shí),求直線AB的方程.
(3)當(dāng)PAPB取最小值時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:方程x2+mx+1=0有兩個(gè)不等的正實(shí)數(shù)根,命題q:方程4x2+4(m+2)x+1=0無實(shí)數(shù)根.若“p或q”為真命題,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com