圓C1:(x-3)2+(y+1)2=4關(guān)于直線(xiàn)x-y=0對(duì)稱(chēng)的圓C2的方程為:( 。
A、(x+3)2+(y-1)2=4
B、(x+1)2+(y-3)2=4
C、(x-1)2+(y+3)2=4
D、(x-3)2+(y+1)2=4
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專(zhuān)題:直線(xiàn)與圓
分析:根據(jù)點(diǎn)(a,b)關(guān)于直線(xiàn)y=x的對(duì)稱(chēng)點(diǎn)為(b,a),求得C2(-1,3),從而求得圓C1關(guān)于直線(xiàn)x-y=0對(duì)稱(chēng)的圓C2的方程.
解答: 解:由于圓C1:(x-3)2+(y+1)2=4的圓心(3,-1)關(guān)于直線(xiàn)x-y=0對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為C2(-1,3),
故圓C1:(x-3)2+(y+1)2=4關(guān)于直線(xiàn)x-y=0對(duì)稱(chēng)的圓C2的方程為 (x+1)2+(y-3)2=4,
故選:B.
點(diǎn)評(píng):本題主要考查求一個(gè)圓關(guān)于一條直線(xiàn)的對(duì)稱(chēng)的圓的方程的方法,關(guān)鍵是求出對(duì)稱(chēng)圓的圓心坐標(biāo),注意點(diǎn)(a,b)關(guān)于直線(xiàn)y=x的對(duì)稱(chēng)點(diǎn)為(b,a),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,則不等式(x-2)f′(x)<0的解集為( 。
A、(-∞,
1
3
B、(-∞,
1
3
)∪(2,+∞)
C、(-1,
1
3
)∪(2,+∞)
D、(-∞,-1)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)F為銳角△ABC的“費(fèi)馬點(diǎn)”,即F是在△ABC內(nèi)滿(mǎn)足∠AFB=∠BFC=∠CFA=120°的點(diǎn).若|
FA
|=3,
FB
|=4,|
FC
|=5,且實(shí)數(shù)x,y滿(mǎn)足
AF
=x
AB
+y
AC
,則
x
y
=( 。
A、
5
4
B、
25
16
C、
3
2
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的公差d≠0,且a1,a3,a13成等比數(shù)列,若a1=1,Sn是數(shù)列{an}前n項(xiàng)的和,則
2Sn+16
an+3
(n∈N+)的最小值為( 。
A、4
B、3
C、2
3
-2
D、
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線(xiàn)y=cosx(-
π
2
≤x≤
π
2
)與兩坐標(biāo)軸所圍成的圖形的面積為( 。
A、4
B、2
C、
5
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知樣本點(diǎn)(xi,yi)(i=1,2,…,n)的散點(diǎn)圖呈線(xiàn)性正相關(guān),且回歸直線(xiàn)的斜率估計(jì)值的絕對(duì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線(xiàn)方程為( 。
A、
y
=1.23x+4
B、
y
=1.23x+5
C、
y
=1.23x+0.08
D、
y
=0.08x+1.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
2x-1
lnx
的定義域?yàn)椋ā 。?/div>
A、(0,+∞)
B、(0,1)∪(1,+∞)
C、(0,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)y=f(x-1)的圖象關(guān)于(1,0)對(duì)稱(chēng),且當(dāng)x∈(-∞,0)時(shí),f(x)+xf′(x)<0(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=(30.3)•f(30.3),b=(ln2)•f(ln2),c=(log 
1
2
4)•f(log 
1
2
4),則a,b,c的大小關(guān)系是(  )
A、a>b>c
B、a>c>b
C、c>b>a
D、c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),D(1,0),過(guò)橢圓C的右焦點(diǎn)F(
2
,0)且垂直于x軸的直線(xiàn)與橢圓交于A(yíng),B兩點(diǎn),
OA
OB
=
5
3

(1)求橢圓C的方程;
(2)過(guò)點(diǎn)D的直線(xiàn)與橢圓C交于M,N兩點(diǎn),若
MD
=2
DN
,求直線(xiàn)MN的方程;
(3)設(shè)直線(xiàn)y=kx+2交橢圓C于P,Q兩點(diǎn),若以DP,DQ為鄰邊的平行四邊形DPRQ滿(mǎn)足|PQ|=|DR|,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案