已知樣本點(diǎn)(xi,yi)(i=1,2,…,n)的散點(diǎn)圖呈線性正相關(guān),且回歸直線的斜率估計(jì)值的絕對(duì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為( 。
A、
y
=1.23x+4
B、
y
=1.23x+5
C、
y
=1.23x+0.08
D、
y
=0.08x+1.23
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:設(shè)出回歸直線方程,將樣本點(diǎn)的中心代入,即可求得回歸直線方程.
解答: 解:設(shè)回歸直線方程為
y
=1.23x+a
∵樣本點(diǎn)的中心為(4,5),
∴5=1.23×4+a
∴a=0.08
∴回歸直線方程為
y
=1.23x+0.08
故選C.
點(diǎn)評(píng):本題考查線性回歸方程,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≤a},B={x|1<x<2},A∩(∁RB)={x|x≤1},則實(shí)數(shù)a的取值范圍是( 。
A、1≤a≤2
B、1<a<2
C、1≤a<2
D、1<a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)據(jù)x1,x2,…,xn的平均數(shù)為
.
x
,方差為s2,則3x1+5,3x2+5,…,3xn+5的平均數(shù)和標(biāo)準(zhǔn)差分別為( 。
A、
.
x
,s
B、3
.
x
+5,s
C、3
.
x
+5,3s
D、3
.
x
+5,
9s2+30s+25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某電視臺(tái)連續(xù)播放6個(gè)廣告,分別是三個(gè)不同的商業(yè)廣告和三個(gè)不同的公益廣告,要求最后播放的不能是商業(yè)廣告,且任意兩個(gè)公益廣告不能連續(xù)播放,則不同的播放方式有( 。
A、36種B、108種
C、144種D、720種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C1:(x-3)2+(y+1)2=4關(guān)于直線x-y=0對(duì)稱的圓C2的方程為:( 。
A、(x+3)2+(y-1)2=4
B、(x+1)2+(y-3)2=4
C、(x-1)2+(y+3)2=4
D、(x-3)2+(y+1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+4x+b(x∈R)的值域?yàn)閇0,+∞),則a2+b2的最小值為( 。
A、2B、4C、8D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ的終邊過點(diǎn)P(5m,-12m),(m<0),則2sinθ+cosθ的值是( 。
A、
19
13
B、
19
13
或-
19
13
C、-
19
13
D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知多面體ABCDE中,DE⊥平面ACD,AB∥DE,AC=AD=CD=DE=2,AB=1,O為CD的中點(diǎn).
(1)求證:AO∥平面BCE;
(2)求證:AO⊥平面CDE;
(3)求直線BD與平面BEC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體中,四邊形ABCD是等腰梯形,AD∥CD,∠DAB=60°
FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(1)求證:平面ABCD⊥平面AED;
(2)直線AF與面BDF所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案