【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( )
A.
B.y=e﹣x
C.y=lg|x|
D.y=﹣x2+1
【答案】D
【解析】解:A中,y= 為奇函數(shù),故排除A;
B中,y=e﹣x為非奇非偶函數(shù),故排除B;
C中,y=lg|x|為偶函數(shù),在x∈(0,1)時(shí),單調(diào)遞減,在x∈(1,+∞)時(shí),單調(diào)遞增,
所以y=lg|x|在(0,+∞)上不單調(diào),故排除C;
D中,y=﹣x2+1的圖象關(guān)于y軸對(duì)稱,故為偶函數(shù),且在(0,+∞)上單調(diào)遞減,
故選D.
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識(shí)點(diǎn),需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某活動(dòng)小組為了估計(jì)裝有5個(gè)白球和若干個(gè)紅球(每個(gè)球除顏色外都相同)的袋中紅球接近多少個(gè),在不將袋中球倒出來(lái)的情況下,分小組進(jìn)行摸球試驗(yàn),兩人一組,共20組進(jìn)行摸球?qū)嶒?yàn).其中一位學(xué)生摸球,另一位學(xué)生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做400次試驗(yàn),匯兌起來(lái)后,摸到紅球次數(shù)為6000次.
(1)估計(jì)從袋中任意摸出一個(gè)球,恰好是紅球的概率是 ;
(2)請(qǐng)你估計(jì)袋中紅球接近 個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】教育部,體育總局和共青團(tuán)中央號(hào)召全國(guó)各級(jí)各類學(xué)校要廣泛,深入地開(kāi)展全國(guó)億萬(wàn)大,中學(xué)生陽(yáng)光體育運(yùn)動(dòng),為此,某校學(xué)生會(huì)對(duì)高二年級(jí)2014年9月與10月這兩個(gè)月內(nèi)參加體育運(yùn)動(dòng)的情況進(jìn)行統(tǒng)計(jì),隨機(jī)抽取了100名學(xué)生作為樣本,得到這100名學(xué)生在該月參加體育運(yùn)動(dòng)總時(shí)間的小時(shí)數(shù),根據(jù)此數(shù)據(jù)作出了如下的頻數(shù)和頻率的統(tǒng)計(jì)表和 頻率分布直方圖:
(I)求a,p的值,并補(bǔ)全頻率分布直方圖;
(Ⅱ)根據(jù)上述數(shù)據(jù)和直方圖,試估計(jì)運(yùn)動(dòng)時(shí)間在[25,55]小時(shí)的學(xué)生體育運(yùn)動(dòng)的平均時(shí)間;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)報(bào)道,某公司的33名職工的月工資(以元為單位)如下:
職務(wù) | 董事長(zhǎng) | 副董事長(zhǎng) | 董事 | 總經(jīng)理 | 經(jīng)理 | 管理員 | 職員 |
人數(shù) | 1 | 1 | 2 | 1 | 5 | 3 | 20 |
工資 | 5 500 | 5 000 | 3 500 | 3 000 | 2 500 | 2 000 | 1 500 |
(1)求該公司職工月工資的平均數(shù)、中位數(shù)、眾數(shù);
(2)假設(shè)副董事長(zhǎng)的工資從5000元提升到20000元,董事長(zhǎng)的工資從5500元提升到30000元,那么新的平均數(shù)、中位數(shù)、眾數(shù)又是什么?(精確到元)
(3)你認(rèn)為哪個(gè)統(tǒng)計(jì)量更能反映這個(gè)公司員工的工資水平?結(jié)合此問(wèn)題談一談你的看法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ln(x+ ),
(1)判斷并證明函數(shù)y=f(x)的奇偶性;
(2)判斷并證明函數(shù)y=f(x)在R上的單調(diào)性;
(3)當(dāng)x∈[1,2]時(shí),不等式f(a4x)+f(2x+1)>0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓的極坐標(biāo)方程為.若以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立平面直角坐標(biāo)系.
(Ⅰ)求圓的參數(shù)方程;
(Ⅱ)在直角坐標(biāo)系中,點(diǎn)是圓上動(dòng)點(diǎn),試求的最大值,并求出此時(shí)點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知焦點(diǎn)在x正半軸上,頂點(diǎn)為坐標(biāo)系原點(diǎn)的拋物線過(guò)點(diǎn)A(1,﹣2).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過(guò)拋物線的焦點(diǎn)F的直線l與拋物線交于兩點(diǎn)M、N,且△MNO(O為原點(diǎn))的面積為2 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐P﹣ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且這四個(gè)頂點(diǎn)都在半徑為2的球面上,PA=2PB,則這個(gè)三棱錐的三個(gè)側(cè)棱長(zhǎng)的和的最大值為( 。
A.16
B.
C.
D.32
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com